
RESEARCH PO STER PRESENTATIO N DESIG N ©  2015

w w w .PosterPresentations.com

Figure 2. PRS distribution in cases (1) & 
controls (0) at p<1x10-5.

The polygenic contribution to AD risk varies 
across study designs and the comparability of 
estimates remains unclear. AD polygenic risk 
sores (PRS) capture much of the common genetic 
influences contributing to risk prediction, with 
maximum area under the curve (AUC) estimates 
approaching .90 and inferred heritability 
estimates of .27 to .55 (Escott-Price et al, 2017).  
Studies estimating SNP-based heritability report 
estimates of .24 to .53 (e.g., Ridge et al, 2016).  
On the other hand, twin studies of AD risk 
suggest a median heritability of .52, and a 
maximum value of .79 (Gatz et al, 2014).

Introduction

We compare multiple methods all within twin 
samples and ask -- how do AD PRS contributions 
vary across methods and what does AD PRS 
contribute beyond APOE?

Aim

Analysis

GLMM. The strongest prediction was at a PRS threshold of p<1x10-4 

(7.3%) but nearly identical to p<1x10-5 (7.2%). The prediction of the 
PRS without the APOE region was 1.6% at both thresholds. AUC 
values ranged from .93 to .96. When APOE SNPs were tested, the 
directly genotyped ɛ2 and ɛ4 SNPs contributed 8.8% and the residual 
PRS without the APOE region captured an additional 1.4% at both 
thresholds (see Table 2). The PRS distribution at p<1x10-5 is shown 
in Figure 2, adjusted for the first four ancestry PCs and array type.

Results

Results (cont.)
In comparing the IGAP2 summary statistics 
(Kunkle et al, 2019) to GWAS results based on 
our current sample, the beta coefficients 
suggested similar effect sizes for those included 
in the PRS at p<1x10-5 (r=.54, p < 6.1e-08; NSNPs = 
89) and p< 1x10-4 (r=.36, p < 2.1e-08; NSNPs = 
233). 
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Measuring Heritable Contributions to AD: Polygenic Risk Score Analysis in Biometric, SNP-Based & AUC Models with Twins

Sample
Swedish Twin Registry (STR) samples with 

clinically-based dementia and AD diagnoses 
(c.f., Gatz 2006): 
• Cases = 430, Controls = 1154, from 1135 twin 

pairs (449 complete) 
• Mage = 85.29, SD = 7.02 years; 44% male

Age distributions across cases and controls are 
listed in Table 1, and are comparable. Age is 
coded as last age (age at last follow-up, death, or 
AD onset).

METHODS

AD STATUS N LASTAGE SD MIN MAX
0 1154 84.67 7.31 66.08 104.39
1 430 86.97 5.88 66.05 102.26

TOTAL 1584 85.29 7.02 66.05 104.39

AD PRS scores derived from the recent IGAP2 update  (Kunkle et 
al, 2019). PRSs were adjusted for the first four ancestry PCs, and 
standardized within SNP array (PsychChip, Omni Express).
GLMM: PRS effects were tested using GLMM (lme4 in R; Bates et 
al, 2015) controlling for LastAge and sex, with random effects 
estimated for pair to account for sibling dependencies.
Biometric: PRS contributions were tested using Mplus 8.4 (Muthen
& Muthen, 2017) with Additive genetic (A) and common (C) and 
person-specific  Environmental (E) variance (see Figure 1) with 
expected correlations: rMZ = a2+ p2 + c2   and rDZ = ½a2 + ½p2 + c2.

Model VC Est se t p
0. Baseline A .645 .251 2.570 .010

C .095 .218 .437 .662
E .260 .072 3.623 .000

PRS -- -- -- --
1. PRS A .563 .291 1.937 .053

C .002 .240 .010 .992
E .276 .092 3.005 .003

PRS .159 .078 2.039 .041
2. PRS NO APOE A .555 .251 2.213 .027

C .159 .209 .762 .446
E .260 .083 3.135 .002

PRS .026 .026 1.026 .305

Table 2. GLMM models with AD PRS at p<1x10-5

*1151 controls, 428 cases with direct APOE genotyping

Biometric Twin Model. Twin models used complete 
pairs (190 MZ, 259 DZ). The strongest prediction was at a 
PRS threshold of p<1x10-5 . A baseline model suggested 
heritable influences of .645 (p = .010) or 64.5% of the  
liability to AD risk (see Table 3). Adding PRS at p<1x10-5 

contributed 15.9% (p = .041) and 2.6% to this background 
variation, with and without the APOE region, respectively. 
The contribution at p<1x10-4 was lower at 15.5% (p = .031) 
and 2.3%, respectively.

Table 3. Twin Model: AD PRS at p<1x10-5.

CONCLUSION

The estimates of AD PRS contribution to AD risk 
vary across methods (7.2% – 15.9%)  even within 
the same sample, which may reflect assumptions 
among the methods about the underlying scale of 
AD risk. Nonetheless, the APOE region explains 
much of the measurable contribution to AD, with 
smaller polygenic contribution from other 
common genetic influences.   
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Model
R2

AD PRS 
R2

APOE ɛ2 & ɛ4 AUC
1. PRS p<1x10-5 .072 -- .941
2. PRS p<1x10-5  

No APOE region .016 -- .960
3. PRS No APOE &      

Direct APOE* .014 .088 .929

Figure 1. Biometrical Model with AD PRS. 
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Note. VC= Variance Component. Adjusted for LastAge and LastAge2; VC 
estimates were constrained equal across males and females.


