Leveraging Machine Learning to Assist Clinicians with Clinical Dementia Rating (CDR) Scores in Online Dementia Diagnosis

Albert Weerman, Danish Jain

Paper No: 2023-010

CESR-SCHAEFFER WORKING PAPER SERIES

The Working Papers in this series have not undergone peer review or been edited by USC. The series is intended to make results of CESR and Schaeffer Center research widely available, in preliminary form, to encourage discussion and input from the research community before publication in a formal, peer-reviewed journal. CESR-Schaeffer working papers can be cited without permission of the author so long as the source is clearly referred to as a CESR-Schaeffer working paper.
Leveraging Machine Learning to Assist Clinicians with Clinical Dementia Rating (CDR) Scores in Online Dementia Diagnosis
CESR Working Paper No: 2023-008

Albert Weerman1 and Danish Jain2

1Center for Social and Economic Research, University of Southern California
2Viterbi, University of Southern California

March 14, 2024

Abstract

To improve dementia diagnostic reliability and accuracy some studies suggest a consensus panel approach for the diagnosis of dementia (1-2). A panel of clinicians meet in person or online to discuss and use the Clinical Dementia Rating (CDR) Score to assess the study participant’s cognitive and clinical profile. A few studies including the Longitudinal Aging Study in India (LASI-DAD) and the Health and Aging in Africa: A Longitudinal Study of an INDEPTH Community in South Africa (HAALSI) have moved this rating for their first wave of data collection to an online system where raters enter their diagnosis. The system then filters out cases where no consensus is reached. The raters can go back in the system to update their rating or the case moves to an in-person or online meeting where a moderator discusses the case. To aid the moderator in the second wave of LASI-DAD and HAALSI Pride data collection, we aim to provide a CDR Score prediction based on data collected in wave 1 in combination with the clinician’s ratings.

Key words: Clinical Dementia Rating (CDR), dementia, LASI - DAD, HAALSI Pride

1 Introduction

Dementia is a condition where there is a loss in cognitive functioning - remembering, thinking and reasoning. The severity ranges from mild symptoms where a person’s dementia just begins to affect a person’s functionality to severe stages where a person has to completely depend on someone else. In recent years, machine learning (ML) models have emerged as powerful tools for predicting dementia and assessing its severity. The aim of this research paper is to investigate the application of machine learning (ML) models for the prediction of Clinical Dementia Rating (CDR) scores. CDR is a global rating scale used to measure the severity of Dementia ranging from 0 (No Dementia) to 3 (severe cognitive impairment).1-3 By utilizing ML models to predict CDR scores, we aim to enhance the precision and speed of dementia assessments, facilitating early intervention and treatment for individuals affected by this condition.

Our research paper details the datasets used in our study, which comprises clinical information from a large sample of individuals with dementia. The core of our study focuses on the application of machine learning models for predicting CDR scores, which are widely utilized for assessing dementia severity.4 We discuss the specific models we employed, including decision trees, random forests, support vector machines, XGBoost and ensemble learning models, and provide insight into how these models were trained and validated using our datasets.5 Additionally, we analyze and compare the performance of these models in predicting CDR scores.

To conclude, we emphasize the potential benefits of
using machine learning models for early detection and personalized treatment of dementia.

2 Datasets

Our study utilized data from the Health and Aging in Africa: A Longitudinal Study of an in-depth Community in South Africa (HAALSI Pride) and the Longitudinal Aging Study in India - Diagnostic Assessment of Dementia (LASI-DAD) study, which consisted of adults aged 60 and over who underwent comprehensive neuropsychological testing and informant interviews between 2018 and 2020.6-7 To predict CDR ratings for wave 2, we trained a XGboost model leveraging GridsearchCV its performance. We used clinical consensus ratings from a subset of the sample from wave 1 to train our model, and predicted CDR ratings for the round 2 respondents. After data cleaning, which involved removing records with missing data (\'x\') and replacing all 0.5 CDR Dementia ratings in the dataset with a 0 rating, we obtained a dataset of 2374 records containing both numeric and categorical data.8 We dealt with missing values in each column either by replacing them with the mean or mode of that column, depending on the column type. Categorical values were encoded using label encoders. Finally, we split the dataset into training and testing set in a 3:1 ratio to train our model and evaluate our model’s performance.

3 System description

Following the completion of the data pre-processing stage, the next step was to split the datasets into training and testing sets, and then train several machine learning (ML) classifiers, including Logistic Regression, KNeighbors, Decision Tree, Support Vector Machine, Random Forest, XGBoost and ensemble models on the training set. To obtain a more accurate assessment of the performance of the classifiers, we utilized k-fold cross-validation technique.

Performance metrics such as accuracy, precision, recall and F1-score were calculated for each fold, and the results were then averaged across all five folds.9 This approach allowed us to obtain a more reliable estimate of the overall performance of each classifier. Based on the results of k-fold cross-validation, we selected the best-performing classifier and further evaluated its performance on the testing set.10

3.1 Logistic Regression Classifier

Logistic Regression is a supervised machine learning model that can be used as a classifier working on the supposition that the data can be split by a line or a n-dimensional plane.11 Classification is done by calculating the value of a first degree polynomial of the following form:

\[y = w_1 \times x_1 + w_2 \times x_2 + \ldots + w_n \times x_n \]

(1)

where y is the target variable, x is the input parameter, w is the weight assigned to this parameter, and n is the number of input parameters. After generating the output (y) using logistic regression, the next step is to apply a logistic function, such as the sigmoid to y. This transforms y to a value between 0 and 1.12 To classify y into class A or B, we applied a decision rule that compared the predicted probability to a threshold value of 0.5. If the predicted probability was greater than or equal to 0.5, the observation was classified as class A or else class B. To perform multiclass classification we make use of the one-vs-rest (\"ovr\") option. It involves breaking down a multiclass classification problem into multiple binary classification problems, where each binary classifier distinguishes one class from the rest of the classes. During prediction, the model with the highest confidence score among all binary classifiers is chosen as the predicted class for a given input.

3.2 KNN

K-Nearest Neighbors is a supervised machine learning algorithm which can be utilized for multiclass classification. It works on a foundational assumption that data points that share similar characteristics are apt to be clustered or located in proximity to one another.13 To classify a new data point, the algorithm considers the labels of the k closest data points in the feature space and assigns the majority
class label among them as the predicted label for
the new data point.14

\textbf{3.3 Decision Tree Classifier (CART)}

Classification and Regression Trees (CART) are supervised machine learning models used for binary and multiclass classification. They work by splitting the dataset into small sections until a stopping condition is met.15-16 The process begins by splitting the dataset at the root node based on a selected feature and a splitting criterion which can be estimated by calculating the Gini index.17 Gini index is calculated as the sum of the squared probabilities of each class in the node subtracted from 1. We divide the dataset at each stage in such a way that the Gini index is reduced making the feature space pure. This process continues until a stopping criterion is met, such as reaching a maximum tree depth or having too few instances in a node. After the decision tree is constructed, at each node the split rule is used to determine which branch to follow. Once a leaf node is reached, the instance is assigned to one or more classes based on the majority proportion of instances belonging to each class in that node.18

In case of a multiclass classification, there can be multiple classes assigned to a leaf node, and the majority class is determined based on the proportion of instances belonging to each class. In case of a tie CART assigns a class based on some predefined rule.

\textbf{3.4 Support Vector Machines}

Support Vector Machine (SVM) is a supervised machine learning algorithm that helps in classification or regression problems by finding an optimal boundary between the labels. The principal foundation of SVM is to find a hyperplane that maximizes the separation of the data points to their potential classes in an n-dimensional space.19 SVM supports only binary classification. However to overcome this limitation, SVM makes use of One-to-One approach, which breaks down the multiclass problem into multiple binary classification problems.

\textbf{3.5 Random Forest Classifier}

Random Forest is an ensemble supervised machine learning algorithm widely used in classification and regression tasks.20 An ensemble model is a model which is created by the combination of multiple models. In a random forest model, different decision trees are constructed with the help of subset of features and labels. Every decision tree constructed
has an output generated and the final label is decided by majority voting.21

![Random Forest Classifier](image)

Figure 4: Random Forest Classifier

3.6 XGBoost

XGBoost is a decision-tree based ensemble machine learning algorithm which makes use of gradient boosting. Gradient boosting is a technique that uses a gradient descent algorithm to add weak models in an iterative manner. This technique sets specific target outcomes for the next model based on the gradient of the error with respect to the prediction, and thus, is called gradient boosting.22 GBDTs (Gradient Boosting Decision Trees) train a set of shallow decision trees in an iterative manner, where each tree is trained using the residual errors of the previous model. The final prediction is a weighted sum of all the tree predictions. GBDTs iteratively train an ensemble of shallow decision trees, with each iteration using the error residuals of the previous model to fit the next model. The final prediction is a weighted sum of all of the tree predictions. Random forest “bagging” minimizes the variance and overfitting, while GBDT “boosting” minimizes the bias and underfitting.

3.7 Ensemble Learning

Ensemble Learning is an approach in which predictions from multiple models are combined to bolster the predictive performance. It combines results from two or more different models to produce a result which has a higher accuracy than any of the models individually. For the purpose of our research, we have combined results from Logistic Regression, Gradient Boosting Classifier and Random Forest Classifier to improve our accuracy.23-24

4 Evaluation

To evaluate the effectiveness of the models, a comparison is made between the models on four different parameters: F1 - Scores, Precision, Recall and Accuracy.25

Accuracy : The base metric used for model evaluation is often Accuracy, describing the number of correct predictions over all predictions:

\[
\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN} \tag{2}
\]

Precision : Precision is defined as the number of correct positive predictions made.

\[
\text{Precision} = \frac{TP}{TP + FP} \tag{3}
\]

Recall : Recall is the ratio of number of positive cases the model correctly predicted to the total number of positive cases in the dataset.

\[
\text{Recall} = \frac{Tp}{Tp + FN} \tag{4}
\]

F1 Score : F1-score is defined as the harmonic mean between Precision and Recall.

\[
F1\text{ Score} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \tag{5}
\]

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F1 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>92.09%</td>
<td>84.8%</td>
<td>92.09%</td>
<td>88.30%</td>
</tr>
<tr>
<td>KNN</td>
<td>91.71%</td>
<td>85.43%</td>
<td>91.71%</td>
<td>88.19%</td>
</tr>
<tr>
<td>CART</td>
<td>92.78%</td>
<td>92.56%</td>
<td>92.35%</td>
<td>92.44%</td>
</tr>
<tr>
<td>SVM</td>
<td>92.09%</td>
<td>84.8%</td>
<td>92.09%</td>
<td>88.30%</td>
</tr>
<tr>
<td>RF</td>
<td>94.49%</td>
<td>93.71%</td>
<td>94.74%</td>
<td>93.90%</td>
</tr>
<tr>
<td>Ensemble</td>
<td>94.74%</td>
<td>94.41%</td>
<td>95.00%</td>
<td>94.61%</td>
</tr>
<tr>
<td>XGBoost</td>
<td>95.00%</td>
<td>94.43%</td>
<td>95.00%</td>
<td>94.61%</td>
</tr>
</tbody>
</table>

Table 1: Performance comparison on LASI-DAD Data

Table 1 shows the performance of 7 classifiers: Logistic Regression (LR), K-Nearest Neighbor (KNN), Decision Tree Classifier (CART), Support Vector Machine (SVM), Random Forest (RF), XGBoost and Ensemble model on the LASI-DAD data. From the table, we can see that XGBoost has the highest performance in all the performance metrics with the highest accuracy of 95.58%. Ensemble Model and RF have the second and third-best performance, respectively, while CART, LR, KNN, and SVM have relatively lower performance.
Table 2: Performance comparison on HAALSI Pride Data

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F1 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>88.49%</td>
<td>88.31%</td>
<td>88.48%</td>
<td>88.38%</td>
</tr>
<tr>
<td>KNN</td>
<td>79.66%</td>
<td>76.34%</td>
<td>79.68%</td>
<td>74.83%</td>
</tr>
<tr>
<td>CART</td>
<td>87.85%</td>
<td>88.61%</td>
<td>88.64%</td>
<td>88.62%</td>
</tr>
<tr>
<td>SVM</td>
<td>78.54%</td>
<td>61.72%</td>
<td>78.56%</td>
<td>69.13%</td>
</tr>
<tr>
<td>RF</td>
<td>92.48%</td>
<td>91.12%</td>
<td>91.36%</td>
<td>91.13%</td>
</tr>
<tr>
<td>Ensemble</td>
<td>91.46%</td>
<td>91.46%</td>
<td>91.36%</td>
<td>91.46%</td>
</tr>
<tr>
<td>XGBoost</td>
<td>91.46%</td>
<td>91.46%</td>
<td>91.36%</td>
<td>91.46%</td>
</tr>
</tbody>
</table>

Table 2 shows the performance of 7 classifiers: Logistic Regression (LR), K-Nearest Neighbor (KNN), Decision Tree Classifier (CART), Support Vector Machine (SVM), Random Forest (RF), XGBoost and Ensemble model on the HAALSI Pride Pride data. From the table, we can see that RF model has the highest performance in all the performance metrics with the highest accuracy of 92.48%. XGboost and Ensemble models have the second and third-best performance, respectively, while CART, LR, KNN, and SVM have relatively lower performance.

In this specific plot 5, we have the accuracy scores of the following classifiers: LR, KNN, CART, SVM, RF and XGBoost. Each box represents the interquartile range (IQR) of the accuracy scores for a particular model, with the median represented as a horizontal line inside the box. The whiskers show the range of the data, with outliers shown as individual points.

In the plot shown in Figure 6, the accuracy scores of different classifiers are displayed. The classifiers included in the plot are LR (Logistic Regression), KNN (K-Nearest Neighbors), CART (Classification and Regression Trees), SVM (Support Vector Machine), RF (Random Forest), and XGBoost.

The plots use a box-and-whisker representation to show the distribution of accuracy scores for each classifier. The boxes represent the interquartile range (IQR) with the median indicated by a horizontal line. Whiskers show the data range, and outliers are displayed as individual points.

Analyzing the box plots provide insights into the variation and central tendency of the accuracy scores for each classifier, facilitating comparisons and assessments of their performance on the given task.

We can conclude that the XGBoost and Random Forest models are the best performing models on the LASI-DAD dataset and HAALSI Pride dataset respectively based on the observations from the box plots. To further improve the performance of our models, we performed hyperparameter tuning using GridSearchCV. This technique helps us find the optimal values for the model’s parameters from a given set of values in a grid.

Figure 8 displays the optimal parameter values obtained after applying GridSearchCV on the LASI-DAD dataset. Similarly, Figure 8 shows the optimal parameter values for the HAALSI Pride dataset.

After hyperparameter tuning, XGBoost model and Random Forest model achieved a final accuracy of 95.99% on the LASI-DAD dataset and an accuracy of 93.86% on the HAALSI Pride dataset respec-
tively.

Figure 7: Optimal parameter values for LASI-DAD Dataset

Figure 8: Optimal parameter values for HAALSI Pride Dataset

5 Results and implementation

The classification report for our models used on these datasets are stated down below.

<table>
<thead>
<tr>
<th></th>
<th>precision</th>
<th>recall</th>
<th>f1-score</th>
<th>support</th>
</tr>
</thead>
<tbody>
<tr>
<td>class 0</td>
<td>0.0</td>
<td>0.97</td>
<td>0.98</td>
<td>724</td>
</tr>
<tr>
<td>class 1</td>
<td>1.0</td>
<td>0.61</td>
<td>0.57</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>1.00</td>
<td>0.50</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>0.00</td>
<td>0.00</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 9: Classification Report on LASI-DAD Data

The classification report for the LASI-DAD dataset shows that the model performs well for class 0, with high precision and recall. However, it struggles with class 1, exhibiting lower precision and recall. On the other hand, the classification report for the HAALSI Pride dataset indicates that the model has a precision of 92% for class 0 and 97% for class 1. The recall is 99% for class 0 and 72% for class 1.

As a result, these models can be used by clinicians to detect dementia in its early stage of development and provide appropriate treatments which might improve a patient’s condition. Early detection of dementia can even help clinicians in improved decision making such as providing the right treatment and monitoring its progression overtime.

Our study delved into assessing the efficacy of our models in differentiating between positive and negative cases in predicting CDR Dementia. Utilizing a comprehensive dataset, we generated Receiver Operating Characteristic (ROC) curves, plotting False Positive Rate (FPR) against True Positive Rate (TPR), to evaluate the performances of our models. Our analysis showcased a notable Area Under the Curve (AUC) value of 0.82 for the Random Forest Model on the HAALSI Pride Dataset (Figure 11), and a value of 0.77 for our XGBoost model on the LAS-DAD Dataset (Figure 12), signifying robust discriminatory abilities and significant improvements over random guessing. These results indicate promising practical applications, particularly in dementia prediction. Through comparative analysis and mindful consideration of potential limitations, our findings lay the groundwork for future research endeavors focused on refining our models’ performance and broadening their applicability in real-world contexts.

Future Scope: The research methodology described above is a general approach that applies to all available data, without focusing on any specific patient characteristics. To enhance the accuracy of the model, personalized models can be de-
developed based on individual patient characteristics such as age, sex, or medical conditions. By doing so, clinicians can intervene earlier and administer the most suitable treatment before the condition worsens, thereby improving patient outcomes.

These screenshots show the suggested CDR rating by the clinicians and the rating calculated by the model. The moderator can take this into consideration at the time of rating.

6 Conclusion

The integration of predictive models into cognitive testing for dementia has significant potential in improving the effectiveness and personalisation of the diagnostic and assessment process. Traditional cognitive tests often have a standardized format that may not fully capture an individual’s unique cognitive abilities and the progression of cognitive decline. By leveraging predictive models, it becomes feasible to adapt and tailor the testing based on an individual’s predicted risk of dementia.

The incorporation of predictive models provides valuable insights into an individual’s likelihood of developing dementia, enabling clinicians to customize the testing approach accordingly. For individuals at a higher risk, more comprehensive and specific cognitive assessments can be administered, facilitating the early detection and monitoring of cognitive impairment. Conversely, for individuals at a lower risk, less intensive testing can be employed, optimizing resources and minimizing unnecessary evaluations.

Moreover, predictive models can play a crucial role in early detection and intervention strategies. By identifying individuals at a higher risk of dementia, proactive measures such as lifestyle modifications, cognitive training, and targeted interventions can be implemented. This proactive approach has the potential to delay or mitigate the onset and progression of dementia, enhancing overall outcomes and quality of life.

The integration of predictive models in cognitive testing not only improves diagnostic accuracy but also enables a more personalized and adaptive ap-
approach to cognitive assessment. By tailoring the testing process based on individual risk profiles, clinicians can optimize resources and provide targeted interventions. Ultimately, this integration contributes to advancements in dementia research, care, and early intervention strategies, leading to improved outcomes for individuals at risk of dementia.

7 References

