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Abstract

Selection bias in genome-wide association studies (GWASs) due to volunteer-based
sampling (volunteer bias) is poorly understood. The UK Biobank (UKB), one of the
largest and most widely used cohorts, is highly selected. We develop inverse probabil-
ity weighted GWAS (WGWAS) to correct GWAS summary statistics in the UKB for
volunteer bias. Across ten phenotypes, WGWAS decreases the effective sample size by
62% on average, compared to GWAS. WGWAS yields novel genome-wide significant
associations, larger effect sizes and heritability estimates, and altered gene-set tissue
expressions. The extent of volunteer bias’s impact on GWAS results varies by pheno-
type. Traits related to disease, health behaviors, and socioeconomic status were most
affected. These findings suggest that volunteer bias in extant GWASs is substantial
and call for a GWAS 2.0: a revisiting of GWAS, based on representative data sets,
either through the development of inverse probability (IP) weights, or a greater focus
on population-representative sampling.



1 Introduction

Genome-wide association studies (GWASs) have resulted in the discovery of numerous ge-

netic associations that can be used to facilitate our understanding of the genetic factors that

contribute to variation in human phenotypes1,2. However, as with other associations derived

from non-representative data3, GWAS results could be affected by selection bias, since in-

dividuals who volunteer to participate in a GWAS cohort are different from the underlying

cohort-specific sampling population3–10. This type of bias, known as volunteer bias, may

affect the internal validity of GWAS results, as study participation in itself can serve as a

collider4,11 from genotype to phenotype. We study whether volunteer bias affects GWAS

findings for various phenotypes in the UK Biobank (UKB), one of the largest and most used

GWAS cohorts.

Evidence suggests genetic studies are affected by non-random selection. For example,

sex shows significant autosomal heritability in data sets that require active participation

(23andMe and the UKB), but not in data sets that require more passive enrollment6. As

no known biological mechanism could cause autosomal allele frequencies to differ between

the sexes, such observed autosomal heritability of sex can be attributed to sex-differential

participation bias. Further, genes are associated with study engagement5,7,12,13. However, it

is unclear whether, how, and to what extent (1) sample non-representativeness biases GWAS

associations, and (2) non-representativeness biases various downstream analyses that are

based on such GWAS results as an input (e.g., SNP-based heritabilities or gene-set tissue

expression).

Non-random sample selection may bias single nucleotide polymorphism (SNP) associa-

tions in various directions, as we outline in detail in supplementary note 1. One possible

scenario is Phenotype-related selection, which leads to attenuation bias. This results in

smaller estimated SNP effect sizes, potential false negatives, and smaller SNP heritabilities.

Under another scenario, Phenotype-genotype-related selection, collider bias occurs: a corre-

lation between the SNP and the phenotype appears even if the SNP does not influence the
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phenotype. This scenario could result in false positives when the true SNP effect size is zero,

or can result in incorrect effect sizes (possibly of the opposite sign) for SNPs that do have

an effect on the phenotype.

The UKB is a crucial data source for GWAS given its large sample size (N ≈ 500, 000) and

deep phenotyping14. However, the UKB suffers from selective participation: only 5.5% of UK

citizens who received an invitation actually participated. Those that did are more likely to

be older, female, and of higher socioeconomic status compared to the invited population15.

Here, we use IP weights to estimate genetic associations in the UKB that are robust to

volunteer bias. We do this by conducting inverse probability weighted GWAS (WGWAS)

for 10 phenotypes. We assess the effects of volunteer bias on GWAS results by comparing

these WGWAS results with unweighted GWAS results estimated for the same phenotypes.

In an earlier study, we compared UKB and UK Census data to demonstrate how selective

participation in the UKB results in substantial biases in various phenotype-phenotype asso-

ciations; these biases can be quite severe and even lead to estimated associations that have

the incorrect sign3. We also constructed inverse probability (IP) weights designed to correct

for volunteer bias in these associations. These IP weights were estimated using a subsample

of the UK Census data, representative of all UK citizens that received an invitation to par-

ticipate in the UKB (the UKB-eligible population). Comparing the UKB-eligible population

(those that were sent an invite) with the actual UKB population allowed developing inverse

probability (IP) weights. The IP weights are precisely estimated and capture an average of

87% of the volunteer bias in various estimated phenotype-phenotype associations3. Thus,

by weighting the UKB, we can substantially remove bias in association estimates due to

volunteering.

Our work builds on other attempts using smaller survey data sets to correct for volunteer

bias in the UKB16–18. Using UK Census data to construct these weights leads to several

improvements. First, the UK Census is more representative of the population and has a

much larger sample size than data previously used. Second, our weights are available for the
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full UKB, rather than a subsample, increasing power. Further, the weights are estimated

using predictors of selection bias that were missing in previous analyses, most importantly

region of residence, which is one the strongest predictors of selection into the UKB.3 Last,

this geographic information was used to accurately restrict the Census data to the UKB’s

target population: those aged 40-69 between 2006 and 2010 who lived sufficiently close to

any of the 22 UKB assessment centers. As a consequence, we believe our weights better

capture volunteer bias in the UKB. Our results suggest that volunteer bias is of even greater

importance to GWAS than has been previously shown18.

2 Results

IP weights were available for ∼ 98% of UKB respondents (see ref3). After various quality

control (QC) steps, our sample consists of 376,900 respondents (see Methods and Supple-

mentary Figure 1). This sample closely resembles the UKB sample that is typically used in

GWAS analyses. We selected 10 phenotypes related to health and social science outcomes,

all collected at baseline. Age at first birth (AFB) and breast cancer we studied in females

only. Supplementary Table 1 summarizes these phenotypes before and after IP weighting.

Weighting changes their mean and standard deviation. For example, the UKB oversampled

those with more education: UKB respondents received an average of 13.8 years of education

(SD=4.91), whereas the mean weighted average is 13.0 years (SD=5.0). The sample size for

all ten phenotypes is larger than 140,081, with an average N of 320,235 and maximal N of

376,900. Supplementary section 2 outlines our coding procedures for each phenotype.

2.1 IP weights capture the genetic component of healthy volun-

teer bias in the UKB

To assess whether our IP weights capture volunteer-based selection that may affect phenotype-

genotype associations, we first performed a GWAS with the IP weights as the phenotype (See
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Methods). This resulted in 7 independent genome-wide significant loci (Supplementary Fig-

ure 2) and a SNP-based heritability of 3.6% (s.e. 0.26%, LD-score intercept: 1.309 [0.009]).

This estimated heritability is much larger than that of a previous attempt to weight GWAS

associations, based on weights derived from the Health Survey of England (HSE; h2=0.9%,

s.e. 0.5%)18. This confirms our prior that the UK Census is better-suited to estimate UKB

IP weights on, for several reasons such as (1) larger sample size, (2) more relevant variables

included in weights estimation such as region, and (3) the ability to precisely restrict the

target data to the population eligible for UKB participation3.

The qq-plot for the associations shows an early lift-off (λ = 1.55; Supplementary Figure

3), suggesting that the IP weights are highly polygenic and that volunteer bias impacts

genetic associations across the genome. Figure 1 shows strong and statistically significant

genetic correlations between the IP weights and various phenotypes (see Methods). The

observed pattern is consistent with the IP weights capturing “healthy volunteer bias”, as

they reflect that those in better health and of higher socioeconomic status (e.g., higher years

of education) are more likely to participate in the UKB. For example, SNPs associated with

a higher IP weight — i.e. with individuals that are underrepresented within the UKB —

are also associated with lower education (rG = −0.711 [0.025]), higher BMI (rG = 0.265

[0.023]), and a higher likelihood of mental disorders (e.g., Depression rG = 0.288 [0.033]).

Overall, these findings suggest that volunteer bias, as captured by the IP weights, has a

genetic influence in the UKB.

Supplementary note 3 provides various follow-up analyses on this IP weights GWAS. Any

genome-wide significant loci in extant GWAS analyses that include the UKB and that were

also significant in our IP weights GWAS should be considered suspect. To aid researchers,

we list all suggestive top hits from our IP weights GWAS (P < 5 · 10−5) in Supplementary

Table 2.
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Figure 1: Genetic correlations between inverse probability weights (based on our GWAS on the IP
weights) and various phenotypes (based on existing GWAS results, see Supplementary Table 3). Respondents
with a lower probability to participate in the UKB are assigned a higher IP weight. Thus, a negative (positive)
genetic correlation between the GWAS on the IP weights and a phenotype implies that individuals with a
higher genetic propensity for that phenotype also have a genetic makeup that is associated with a higher
(lower) likelihood of volunteering for the UKB. Bonferroni-corrected 95% confidence intervals for the 22
hypotheses tested are shown around each estimate.
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2.2 Genetic associations estimated through WGWAS correct for

bias at the cost of increased variance

We first investigate the relation between WGWAS and GWAS SNP effects for previously

identified top hits for each phenotype. We define a “top hit” as having p < 10−5 in a

publicly available well-powered GWAS (N > 200, 000, see Supplementary Table 4) that did

not include the UKB (see Methods). Because well-powered GWAS that do not include UKB

data are not available for every phenotype, we could only perform these analyses for 6 out

of the 10 phenotypes. Table 1 shows the coefficient of a regression of the effect sizes of

these top SNPs estimated through WGWAS on the effect sizes of the same SNPs estimated

through GWAS. This coefficient is significantly larger than one for most cases. Thus, for

most phenotypes, correcting GWAS for volunteer bias through WGWAS results in more

predictive effect sizes, i.e., effect sizes that lie further from the null, which is consistent

with selection bias, here taking the form of attenuation bias. Such attenuation is to be

expected when selection into the data is based on the phenotype, rather than the genotype

(see Supplementary Note 1).

Education, BMI, severe obesity, and drinks per week are most affected by this type of

phenotype-related volunteer bias: correcting for volunteer bias results in an increase of the

SNP effect sizes by 10.9% for years of education, 9.1% for BMI, 8.2% for severe obesity, and

18.3% for drinks per week. By contrast, estimating a WGWAS of height also results in larger

effects, but the overall effect is small: a 2.1% increase in the effect sizes. This is consistent

with evidence that height plays a relatively small role in whether individuals volunteer to

participate (see Figure 1 and Supplementary Table 1).

Breast Cancer is the only phenotype for which we find a significant shrinkage of SNP

effect sizes (Table 1), with a coefficient on the regression of 0.839. Hence, not taking volun-

teer bias into account inflates genetic effect sizes for previously identified top hits for breast

cancer, which implies that some of these previously identified SNPs may have overestimated

effect sizes. As breast cancer is a binary phenotype that is oversampled in the UKB, such an
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Phenotype Coefficient [95% CI] P N
Years of Education 1.109 [1.087;1.131] 5.16× 10−21 504
BMI 1.091 [1.068;1.115] 2.89× 10−13 259
Severe Obesity 1.082 [1.028;1.137] 0.00300 259
Height 1.021 [1.014;1.028] 3.83× 10−9 1967
Drinks Per Week 1.183 [1.054;1.312] 0.00705 30
Breast cancer 0.839 [0.8;0.878] 4.00× 10−15 510

Table 1: Comparison of weighted and unweighted GWAS results (top hits [p < 10−5] only). Each
row shows the coefficient (and 95% confidence interval) for a bivariate regression with the weighted SNP
effect as the dependent variable and the unweighted SNP effect as the independent variable. A coefficient
larger than one implies that WGWAS increases GWAS effect sizes on average (i.e., volunteer bias leads to
an underestimate of the association in GWAS). A coefficient smaller than one implies that WGWAS shrinks
effect sizes on average. P-values are for the null hypothesis that this coefficient equals one. The last column
shows the number of SNPs that are included in the regressions: only independent lead SNPs from GWAS
studies that did not include the UKB are included (see Methods for additional detail).

overestimation is expected under phenotype-related selection (see Supplementary Note 1).

While oversampling of a disease-related phenotype is at odds with the idea of healthy vol-

unteer bias, it could result from older women being more likely to volunteer, in combination

with the increasing prevalence of breast cancer with age19.

Table 2 provides additional comparisons of WGWAS and GWAS results for all ten phe-

notypes using WGWAS and GWAS effect sizes for all SNPs that were included. The first

column shows the genetic correlation between the unweighted and weighted GWAS effect

sizes (see Methods). The correlation is positive in all cases and close to one for most phe-

notypes, but differs statistically significantly from one (at a Bonferroni-corrected level of

p < 0.05) for 6 out of 10 phenotypes. The lowest congruence between weighted and un-

weighted SNP associations is found for T1D (rG = 0.66) and Breast Cancer (rG = 0.80).

We use the standard errors of WGWAS (GWAS) to estimate the effective sample size in

columns 2 and 3 of the table (see Methods). Averaged over all phenotypes, the effective

sample size shrinks from 319,713 in GWAS to 133,922 in WGWAS, a shrinkage of 62.0%.

Related, column 4 shows an increase in the standard errors for each phenotype, which ranges

from 40.0% for breast cancer to 87.0% for T1D. This implies that a representative sample

would have increased the power of GWAS, as the effective sample size shrinks in the UKB

and standard errors increase when volunteer bias is taken into account. Hence, when correct-

ing genetic associations for selection bias using IP weighting, researchers face a bias-variance
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(1) (2) (3) (4) (5) (6) (7) (8)

Phenotype r(β̂GWAS , β̂WGWAS) NGWAS
eff NWGWAS

eff
Increase
S.E.s

sig. hits

GWAS

sig. hits

WGWAS

unique hits

WGWAS
New loci

Age at First Birth 0.976 (0.0128) 139093 51949 71.3% 30 3 2 0
BMI 0.992 (0.0052) 372969 135238 76.7% 1205 127 5 0
Breast cancer 0.803∗(0.0381) 197857 90492 40% 45 8 4 1
Drinks per Week 0.936∗(0.0188) 265696 96008 83% 23 4 0 0
Self-rated health 0.973∗(0.0088) 372714 136982 81.5% 101 6 0 0
Height 0.993 (0.0032) 374175 151328 60.6% 5114 1453 22 0
Physical activity 0.866∗(0.031) 334570 123017 75% 3 0 0 0
Severe Obesity 0.949∗(0.0175) 373834 136396 75.3% 23 1 0 0
Type 1 Diabetes 0.66∗(0.0566) 373786 132605 87% 69 37 15 3
Years of Education 0.988 (0.0062) 392433 160707 63.8% 331 49 3 0

Table 2: Comparison of weighted and unweighted GWAS results. Comparisons use all UKB SNPs in
HapMap3 (1,025,058 in total). The first column shows the genetic correlation between GWAS and WGWAS
results, estimated through LD-score regression (see Methods). The second and third columns show the
effective sample sizes (see Methods) for GWAS and WGWAS. WGWAS increases standard errors by the
percentage shown in column 4 (E[ seWGWAS−seGWAS

seGWAS
]). The last columns show significance levels of SNPs in

approximate linkage equilibrium (through clumping); column 5 shows the number of genome-wide significant
SNPs for each trait in GWAS; column 6 shows this in WGWAS; column 7 indicates whether these genome-
wide significant SNPs in WGWAS are unique. I.e., these SNPs have P < 5·10−8 in WGWAS, but P ≥ 5·10−8

in GWAS. Last, column 8 shows whether these unique hits in WGWAS tagged new loci, as indicated by a
Hausman test that tests for the difference in the effect size as estimated through GWAS and WGWAS, a
more stringent test. These loci were insignificant in GWAS, significant in WGWAS and had a genome-wide
significant p-value on the difference in the effect sizes (PH < 5× 10−8).
* values significantly different from one at a Bonferroni-corrected level of 5% significance, correcting for
multiple hypothesis testing across ten phenotypes, i.e. (p < 0.05/10 = 0.005) .

trade-off.

Columns 5 and 6 of Table 2 document a decrease in genome-wide significant SNPs from

WGWAS relative to GWAS. Here, we only consider independent loci as identified through

clumping of WGWAS (GWAS) summary statistics (see Methods). For example, the number

of genome-wide significant lead SNPs in our BMI GWAS is 1,205, whereas it is 127 in the

corresponding WGWAS. These newly insignificant SNPs may indicate false positives in the

current GWAS literature, but may also be a result of the increased standard errors that are

a feature of WGWAS.

Column 7 shows that WGWAS has the ability to find signal previously deemed insignifi-

cant in GWAS: this column shows hits that are “unique” to WGWAS, i.e., SNPs not genome-

wide significant in GWAS, but genome-wide significant in WGWAS. For 6 out of the 10

phenotypes we tested, correcting for volunteer bias results in such unique hits. However,

not all these SNPs should be considered new discoveries. For example, a SNP could be just

shy of significance in GWAS, and then cross the threshold of genome-wide significance in
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WGWAS, not due to a significant volunteer bias correction, but simply due to chance. To

address this, we use a Hausman test to calculate p-values for the null hypothesis that the

effect sizes in weighted and unweighted GWAS are the same (termed PH , see Methods). For

each phenotype, the qq-plots of PH are shown in Supplementary Figure 4. As described in

the next section, using this strict method of testing, we find a total of four “new loci” that

we consider newly discovered by WGWAS (column 8 in Table 2).

2.3 Correcting for volunteer bias results in the discovery of new

loci that were previously attenuated in GWAS

We consider a SNP a newly discovered locus if it is insignificant in GWAS, significant in

WGWAS (at P < 5 × 10−8) and if there is sufficient evidence that WGWAS estimates

a different effect size for this SNP, compared to the one estimated by GWAS by using a

Hausman test that test for genome-wide significance (PH < 5 × 10−8) in the difference of

the effect sizes. Although very stringent, we identify a total of four independent loci that

satisfy all these criteria: three for T1D, and one for breast cancer (Supplementary Tables 5

and 6). For example, lead SNP rs17186868 is insignificant for T1D in GWAS (β̂ = −0.0012,

ˆs.e. = 0.00080, P = 0.13), but is genome-wide significant in WGWAS (β̂ = −0.0052,

ˆs.e. = 0.00082, P = 2.64 · 10−10). Further, the difference in these point estimates is highly

significant (PH = 1.28 · 10−91). The other two newly identified genome-wide significant lead

SNPs are rs341988 and rs12522568.

Hence, for T1D, volunteer bias results in missing several genome-wide significant loci. A

comparison of the Manhattan plots for GWAS and WGWAS for T1D visually demonstrates

that weighting alters which loci become significant and which ones become insignificant for

T1D (Figure 2). For breast cancer, WGWAS similarly results in the discovery of one new

locus, with lead SNP rs2306412.

We further explored these four newly identified lead SNPs for T1D and breast cancer

in the GWAS catalog (Supplementary Note 4). These four loci have not been previously
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(a) GWAS

(b) WGWAS

Figure 2: Manhattan plot of GWAS and WGWAS results for type 1 diabetes
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identified as being associated with these phenotypes, and are thus novel. We point out two

of these lead SNPs that may be of interest for further exploration. The first, rs12522568,

associated with T1D, is an intronic variant located on the LARP1 gene. LARP1 plays a

central role in immunological processes20. Hence, our newly identified association between

LARP1 and the autoimmune disease T1D could be potentially interesting for follow-up

analyses. The second, rs2306412, associated with breast cancer, is an intronic variant located

on the ANXA5 gene. This gene plays a role in cancer-related processes such as cellular signal

transduction, inflammation, growth and differentiation21.

2.4 SNP heritability estimates become larger after correcting for

volunteer bias

Results presented in subsection 2.1 suggest that the genetic influences of volunteer bias are

highly polygenic. This suggests that volunteer bias can affect SNP associations throughout

the genome in subtle ways that cannot be detected individually (due to a lack of power), but

that can substantially impact downstream analyses of GWAS results that aggregate SNP

effects across the genome. In the remainder, we investigate how weighting GWAS results

affects various downstream findings.

We estimated SNP-based heritabilities — the proportion of phenotypic variance explained

by SNPs — using LD-score regression (see Methods) based on GWAS/WGWAS. We use the

effective sample sizes (see Table 2) to account for the increased estimation error of WGWAS

vis à vis GWAS22. Results are summarized in Table 3.

For most phenotypes, correcting for volunteer bias by WGWAS results in substantial

increases in SNP-based heritability estimates, consistent with the increase in effect sizes

after weighting (Table 1). As in section 2.2, weighting matters most for T1D and breast

cancer. For T1D, the SNP-based heritability increases from 0.54% in GWAS to 4.32%

in WGWAS, a large and highly statistically significant increase (P = 1.63 · 10−41). For

breast cancer, the heritability almost doubles from 2.59% to 5.12% (P = 2.37 · 10−8). Most
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Phenotype GWAS h2 (SE) WGWAS h2 (SE) P GWAS Intercept (SE) WGWAS Intercept (SE)
Age at First Birth 0.1657 (0.0073) 0.2135 (0.0143) 1.28× 10−5 1.0347 (0.0096) 1.0147 (0.008)
BMI 0.2281 (0.0065) 0.2381 (0.0091) 0.14 1.127 (0.0152) 1.033 (0.011)
Breast cancer 0.0259 (0.0034) 0.0512 (0.0059) 2.37× 10−8 1.0208 (0.008) 0.9851 (0.007)
Drinks per Week 0.0599 (0.003) 0.0739 (0.0054) 7.44× 10−4 1.0051 (0.0077) 0.9852 (0.0064)
Height 0.4235 (0.0189) 0.4464 (0.0206) 0.059 1.4785 (0.0345) 1.1694 (0.0195)
Physical activity 0.0281 (0.0019) 0.031 (0.0044) 0.408 0.9962 (0.0069) 0.9933 (0.0069)
Self-rated health 0.0972 (0.0029) 0.125 (0.0052) 9.35× 10−13 1.0522 (0.0103) 1.0091 (0.0079)
Severe Obesity 0.0416 (0.0022) 0.0584 (0.0045) 1.83× 10−6 1.0166 (0.0082) 0.995 (0.0076)
Type 1 Diabetes 0.0054 (0.0014) 0.0432 (0.0035) 1.63× 10−41 1.0194 (0.0074) 0.9403 (0.0064)
Years of Education 0.1482 (0.0052) 0.1775 (0.0073) 2.07× 10−9 1.1635 (0.0155) 1.0531 (0.0113)

Table 3: SNP-based heritabilities for GWAS and WGWAS. SNP-based heritabilities for GWAS (col-
umn 1) and WGWAS (column 2) were estimated using LD-score regression (see Methods). The third column
shows the p-value for the null hypothesis that the GWAS and WGWAS heritabilities are the same. The
fourth and fifth columns show the intercept of the LD-score regression in GWAS and WGWAS, respectively.
An intercept > 1 can be attributed to bias arising from population stratification23.

other phenotypes also have higher heritabilities. For example, education has a heritability

of 14.8% in GWAS, but this increases to 17.8% when volunteer bias is taken into account

(P = 2.07 · 10−9). Drinks per week, severe obesity, AFB, and self-rated health also show

substantial increases in estimated SNP heritabilities. This is consistent with phenotype-

related selection (supplementary note 1). By contrast, Height, BMI, and Physical Activity

do not show significant changes in heritability.

In LD-score regression, an intercept greater than 1 may be indicative of bias due to popu-

lation stratification or cryptic relatedness23. For our unweighted GWASs, we find intercepts

larger than 1 for years of education, BMI, height, self-rated health, and AFB, as is common

for these phenotypes24–26 (see Table 3, column 5). After weighting, the intercept moves

closer to one; for self-rated health and AFB it is statistically indistinguishable from one (see

Table 3, column 6). Hence, WGWAS may have the additional advantage of reducing bias

arising from population stratification.

2.5 Volunteer bias affects gene tissue expression results

Gene tissue expression analyses exhibit different results for various traits in WGWAS, com-

pared to GWAS. Hence, ignoring volunteer bias when estimating GWAS may result in a

biased understanding of the biological pathways through which genes operate on a phe-

notype. Here, we highlight the results for breast cancer (Figure 3). For this phenotype,
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unweighted GWAS results show no evidence of genes, expressed in any particular area of

the body, to be significantly more associated with the likelihood of breast cancer. However,

when estimating the same associations through WGWAS, we find that genes expressed in

the fallopian tube, uterus, and ovary are more likely to exhibit associations with breast can-

cer. Thus, correcting GWAS for volunteer bias may improve understanding of the pathways

through which the genome influences a phenotype of interest.

In supplementary material (Supplementary Figures 6 to 13), we show MAGMA gene

tissue expression analyses for the 9 other phenotypes. We find several phenotypes for which

areas of the body are significantly more expressed in GWAS, but not in WGWAS, namely for

AFB, BMI, self-reported health, and physical activity, suggesting that such findings might

possibly be spurious and driven by volunteer bias.
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(a) GWAS

(b) WGWAS

Figure 3: Gene-set analysis for Breast Cancer, estimated using MAGMA, for GWAS and WGWAS, across
54 gene sets. Only the 15 gene sets with the lowest p-value are included in the plots. The dotted horizontal
line denotes the 5% Bonferroni-corrected significance level (correction for 54 hypotheses).
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3 Discussion

Our analyses highlight the drawbacks of non-random, volunteer-based sampling for GWASs

and subsequent downstream genetic analyses. Contrasting WGWAS with GWAS results

for ten phenotypes, we demonstrated that in GWASs volunteer bias results in (i) missing

novel genome-wide significant loci for T1D and breast cancer, (ii) attenuated effect sizes and

missing heritability for various phenotypes, and (iii) biased gene-tissue expression findings.

Our results suggest that the need to correct GWAS for volunteer bias is phenotype-specific.

Phenotypes for which weighting altered results substantially were disease-related (e.g., T1D,

breast cancer), related to socioeconomic status (e.g., education), or related to health behavior

(e.g., drinks per week). By contrast, for anthropomorphic phenotypes (height and BMI),

weighting made a relatively minor difference. Although weighting still altered various results

for height and BMI, researchers may wish to opt for GWAS (rather than WGWAS) for

such phenotypes, because of a bias-variance tradeoff, which increases the standard errors of

WGWAS vis-à-vis GWAS.

Our results provide insights into the effects of volunteer bias on GWAS, but drawbacks

remain. The IP weights we use to correct for volunteer bias may suffer from omitted variable

bias, since the model that was used to create them only includes variables that the UKB

and UK Census have in common. These variables mostly capture socioeconomic status,

demographics, and self-reported health. It is possible that other variables that relate to UKB

volunteering are missing, e.g., personality characteristics. One indication that the weights do

not capture the full extent of volunteer bias is the fact that sex remains significantly heritable

on the autosome, even after conducting WGWAS (although the estimated heritability did

decrease after weighting from 1.13% (p < 1×10−8) to 0.95% (p = 0.0015); see Supplementary

Note 5). Nonetheless, these weights have been shown to substantially reduce bias, capturing

an average of 87% of volunteer bias in phenotype-phenotype associations3. Therefore, we

consider our analyses as indicative of pervasive volunteer biases in GWASs. In the presence

of omitted variable bias in the weights we developed, differences between unweighted GWAS
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results and true underlying sampling population estimates could be even more pronounced

than the substantial effects we already demonstrated here.

Our work builds on other studies that have considered weighting. In particular, a recent

study constructed weights based on the HSE18. Some of our results are in contrast to these

previous findings. For example, we find that heritability increases after weighting, whereas

these authors find no statistically significant change in heritability or that it decreases. We

attribute these differences to (1) a larger sample size (we can weight the full UKB), (2)

more precisely estimated weights based on 687,489 UK Census respondents3 versus their

22,646 HSE respondents, (3) our use of other important predictors such as region in weight

estimation, and (4) the UK Census observations being more relevant: these were represen-

tative of the target population of the UKB, which, due to the non-random location of UKB

assessment centres, is not the same as the population of England as sampled by HSE. As

a result, we believe the weights used here, estimated using large, fine-grained UK Census

data on many variables that relate to participation, are the best possible weights available to

capture volunteer bias in the UKB. We think the advantages of our weights are distinctive

and would encourage their use in future work.

The focus here was on the UKB. Many other GWAS cohorts are volunteer-based and

may similarly suffer from volunteer bias. Our results suggest that such volunteer biases need

to be taken seriously and can be corrected for. GWAS consortia should ensure that weights

are available for all volunteer-based cohorts included in their GWAS. Such IP weights can

be estimated by comparing the genotyped data set to a source of representative data (e.g.,

Census data or administrative data), provided that both data sets have a sufficient number

of (close to) identically measured variables in common. Further, in the design of a new data

set, it is essential that as many variables as possible are collected that are shared with a

source of representative data to ensure that IP weights can be precisely estimated. Our

results suggest that IP weighting is sufficient to capture a substantial degree of volunteer

bias in genetic association results. WGWAS increases standard errors but is also likely to
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increase effect sizes, such that power need not be reduced. Further, WGWAS reduces the

effective sample size of a cohort, which should be taken into account when meta-analyzing

multiple cohorts.

In sum, we may very well need to move on to GWAS 2.0., a substantial revisiting of the

current state of GWAS analyses based on carefully constructed population-representative

data sets, either through the development of IP weights or a greater focus on population-

representative sampling.
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4 Methods

4.1 Data

4.1.1 UK Biobank (UKB)

The UKB is a cohort of 503,317 individuals collected between 2006 and 2010 at 22 assessment

centres spread out across Great Britain. Potential participants were identified through the

registry of the National Health Service, which covers virtually the whole UK population.

Individuals living in proximity to an assessment centre and aged 40 to 69 at the start of the

assessment period (which varies per assessment centre) received an invitation to participate

20



by post. This UKB-eligible population consists of 9,238,453 individuals who received an

invite, such that the overall acceptance rate was 5.45%.

Figure 1 summarizes our sample selection criteria for the UKB. We drop individuals

that were not included in the genetic subsample, and restrict the UKB to individuals who

identified as “white British” and were of genetic European ancestry, as most published

work with the UKB genetic data uses this sample restriction (e.g. refs1–3). We also drop

respondents that did not meet the standard requirements regarding genetic data quality

control (see next subsection). Last, we dropped 6,292 respondents (1.6%) for whom IP

weights could not be estimated, typically because of missing variables (see ref4 for detail)

4.1.2 Genetic data in the UKB

Genetic data collection on UKB participants has been extensively described elsewhere5.

We restrict our sample to those of white British ancestry, as defined by a PC analysis

conducted by Bycroft et al.5 As is the standard in GWAS analyses, we only keep UKB

participants that were sufficiently densely genotyped: we drop individuals that have missing

values at more than 2% of all SNPs measured in UKB (6,118 participants in total). We

also drop those with outlying heterozygosity values (mean +/− 3 std. deviations of the

heterozygosity distribution observed in the data; 2,279 participants in total). Furthermore,

we drop individuals for whom their reported sex does not match with their sex as inferred

from their measured genome (296 in total), as such mismatch may point towards sample

contamination or sample mix up. We focus on a genotyped sample that is approximately

independent by keeping only one individual from each group of first-degree relatives. The

individual that is kept is the one with the least missingness in their genetic data. Combined,

we drop 18,736 respondents from the sample.

We conduct our analyses on autosomal SNPs which are in HWE (p > 1×10−6), with MAF

> 0.01, and which are missing in less than 2% of all included respondents, as recommended in

ref6). For reasons of computational feasibility, we restrict our analyses to 1,025,058 autosomal
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SNPs identified in HapMap3 that were available in this UKB imputed genotyped data set.27

Although regular GWAS typically examine a more extensive collection of SNPs, HapMap3

offers comprehensive coverage across the entire genome. Additionally, numerous post-GWAS

analytical tools, such as LD-score regression, only focus on the HapMap3 subset. Therefore,

limiting our analysis to HapMap3 SNPs adequately illustrates how selection biases affect

GWAS outcomes.

4.2 GWAS on the IP Weights

We estimate a GWAS using the IP weights as a phenotype by fitting a linear model in PLINK

1.9, restricting to our quality-controlled set of HapMap3 SNPs.28 Note that we did not in-

clude any control variables in these analyses, as any association between the genetic markers

and volunteering propensity, whether this association is direct or indirect, could result in

bias in typical GWAS. Hence, the goal here is to study associations between SNPs and the

IP weights that are both direct (i.e. causal) and indirect (i.e. driven by population strat-

ification, environmental confounding, assortative mating or genetic nurture). Independent

hits of the GWAS on the IP weights were assessed through PLINK’s clumping algorithm

(R2 ≥ 0.1, LD-window of 250kb). SNP-based heritability was estimated using LD-score

regression7 (see subsection 4.7 for additional detail). To assess the genetic overlap between

the IP weights and various other traits, LD-score regresssion was used to estimate genetic

correlations between the GWAS results on the IP weights and publicly available GWAS re-

sults for various phenotypes (see supplementary table 3), again estimated using LD-score

regression.

4.3 Regular GWAS and WGWAS

For each phenotype, we estimate GWAS associations for all HapMap 3 SNPs that were

available in the UKB data. We fit the following model:
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ỹi = α + βSNPij + εi, (1)

where ỹi is the estimated residual of the phenotype from an auxiliary regression which fits

yi on a set of variables that may confound the relationship between SNPj and y. These

variables are genetic sex, the first 20 principal components, genotype measurement batch

fixed effects, and a dummy for individual i’s birth year cohort (5-year bins) capturing the

effects of aging on yi. SNPij is individual i
′s allele count at the ith SNP.

We estimate two GWASs for each phenotype: (1) a regular GWAS, which estimates SNP

associations using the above model by OLS, and (2) an inverse probability weighted GWAS

(WGWAS), which estimates the above model using the IP weights that correct for volunteer

bias as estimated in ref3, through weighted least squares. For WGWAS, ỹ was residualized

using the same IP weights in the auxiliary regression. We estimate heteroskedasticity-robust

(White) standard errors for both GWAS and WGWAS.9 Both GWAS and WGWAS were

estimated in R. The resulting association estimates are denoted β̂GWAS and β̂WGWAS respec-

tively.

4.4 Comparing GWAS and WGWAS results for known top hits

Known top hits were selected from publicly available GWAS results that did not include the

UKB as part of their discovery sample (See supplementary table 4), which were available for

6 out of 10 phenotypes. We selected top hits in this fashion, and not using, e.g., our own

UKB GWAS analyses, to ensure that the selected top hits were not artificially overestimated

due to the winner’s curse10. To obtain top hits that were approximately independent, we

clumped these results using PLINK (R2 ≥ 0.1, LD-window of 250kb). Top hits were selected

by only selecting SNPs with cutoff p < 10−5.
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4.5 Testing for significant differences in WGWAS and GWAS as-

sociations

We test the null hypothesis that the estimates of β in Equation 1 as obtained through GWAS

and WGWAS are the same, i.e. H0 : β̂GWAS = β̂WGWAS, by constructing a Hausman test

statistic: H = (β̂GWAS−β̂WGWAS)2

V(β̂GWAS−β̂WGWAS)
, where V denotes the variance. In this expression we use

V(β̂GWAS − β̂WGWAS) = V(β̂GWAS)−V(β̂WGWAS), given that β̂GWAS is estimated efficiently

under the null11,12. Estimates of V(β̂GWAS) and V(β̂WGWAS) are easily approximated by

squaring the standard errors of β̂GWAS and β̂WGWAS, respectively. This test statistic follows

a chi-squared distribution with 1 degree of freedom. Hence, P-values for rejection of the null

hypothesis (denoted PH) are obtained by comparing H to this chi-squared distribution.

4.6 Determining the effective sample sizes of GWAS and WGWAS

The effective sample size aids to understanding how much non-representativeness dilutes

the power of GWAS results, and are a crucial input into the LD-score regressions (see next

subsection). We calculate the effective sample size for each SNP13, given by

Neff =
σ2
y,k

SE2
k · [2 ·MAFk · (1−MAFk)]

,

with k ∈ GWAS,WGWAS referring to either the unweighted or IP weighted sample statis-

tic, σ2
y,k the variance of the phenotype, MAF the minor allele frequency of the SNP, and

SE2
k the standard error of the SNP as determined by unweighted or IP weighted GWAS,

respectively. For each phenotype, the effective sample size as averaged over all SNPs is

reported.

4.7 SNP-based heritabilities and genetic correlations

We use LD-score regression to estimate the genetic correlation and SNP-based heritabilities

for GWAS and WGWAS7,14. GWAS and WGWAS summary statistics were prepared using
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the munge sumstats.py function of the ldsc package7. Our estimates of Neff were used as

the parameter for the sample size when preparing the summary statistics for both GWAS

and WGWAS. Some research suggests that, for binary phenotypes, a transformation towards

the liability scale is necessary to interpret SNP-based heritabilities properly15. This scale

needs the population prevalance as an additional parameter. However, since our goal is not

to make definitive statements about true SNP-based heritabilities, but rather to compare

GWAS with WGWAS, we decide to report these heritabilities on the observed scale (i.e.,

without correction for population prevalence). Such that a comparison between GWAS and

WGWAS results can be made based on the estimated associations of the SNPs, and not

based on additional changes in estimates of population prevalence.

To evaluate whether our SNP-based heritabilities differed for GWAS and WGWAS, we

construct the following Z-statistic:

Z =
h2
GWAS − h2

WGWAS√
s.e.(h2

GWAS) + s.e.(h2
WGWAS)− 2cov(h2

GWAS, h
2
WGWAS)

,

with h2
GWAS and h2

WGWAS the SNP-based heritabilities estimated through GWAS and WG-

WAS, respectively, s.e(h2
GWAS) and s.e.(h2

WGWAS) their standard errors, and cov(h2
GWAS, h

2
WGWAS)

the covariance of these estimates, which is computed by

cov(h2
GWAS, h

2
WGWAS) = cor(h2

GWAS, h
2
WGWAS)× s.e.(h2

GWAS)× s.e.(h2
WGWAS),

estimating cor(h2
GWAS, h

2
WGWAS) as the value of the intercept from the cross-trait LD-score

regression on the weighted and unweighted GWAS results13,16.

4.8 Gene tissue expression analyses

Gene tissue expression analysis is a popular tool for understanding the biological pathways

through which genes may operate on a phenotype. We assessed the relevance of volun-

teer bias for such bio-annotations by conducting gene-set analyses using our WGWAS and
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GWAS summary statistics in MAGMA (implemented through the FUMA pipeline)17,18. This

pipeline assesses whether genetic associations are above-averagely enriched across 54 gene

sets as categorized by tissue type.

Data Availability

UK Biobank data is accessible upon request and approval by the UK Biobank committee

(https://www.ukbiobank.ac.uk/). The IP weights developed here have been returned to

the UKB and will be made available as a data field to UKB-approved researchers.

Code Availability

All code used for generating the results is available at https://github.com/sjoerdvanalten/

UKB_WGWAS
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1 Impact of volunteer bias on SNP associations esti-

mated through GWAS

Continuous phenotypes

Non-random sample selection may bias single nucleotide polymorphism (SNP) associations

in various directions, depending on the associations between the outcome Y , the SNP, and

their associations with selection into the data set. Here, we provide some simulations to

illustrate how phenotype-SNP associations are biased under various scenarios of selection

into the data set.

Phenotype-related selection

One possible scenario is phenotype-related selection (scenario 1). Under this scenario, those

with higher values of the phenotype Y (e.g., higher educated people), are more likely to

volunteer. This effectively narrows the distribution of the sample. Such selection results in

a flatter slope, i.e. attenuation bias, and, hence, smaller estimated SNP effect sizes. This

could result in potential false negatives, and smaller SNP heritabilities.

Simulation results illustrate this. First, we consider how selection biases estimates when

studying a continuous phenotype. We simulate a population of 1,000,000 individuals, with

simulated phenotype Y = 0.04 · SNP + ε, with SNP ∈ {0, 1, 2}, minor allele frequency

p = 0.4, and an error term ε that is normally distributed with standard error 1 and mean

zero. Without loss of generality, we assume that Y positively influences the probability

of being selected into the sample. To simulate phenotype-related selection, we consider a

non-randomly selected subsample that consists of the 5% of this population with the largest

simulated values Y of the phenotype, Y > Y ∗ = P Y
95, with P Y

95 being the 95th percentile of

Y.

Table S1 shows the results of these simulations. Column 1 provides the baseline (no

selection). Here, the estimated coefficient of the SNP on Y is statistically indistinguishable

2



from 0.04. In other words, the phenotype-genotype association of interest is properly identi-

fied when the whole population could be observed. Phenotype-related selection (scenario 1)

effectively narrows the distribution of the phenotype in the sample. This results in attenu-

ation bias and thus smaller estimated SNP effect sizes, as here the coefficient is only 0.006,

an attenuation of 85% (see column 2).

Phenotype-genotype-related selection

Another scenario, Phenotype-genotype-related selection (scenario 2), is arguably more con-

cerning. Under this scenario, sample selection is determined by both the phenotype Y and

the SNP that is being tested. For example, consider a research design in which a SNP’s asso-

ciation with educational attainment is tested. It could be that this SNP influences another

phenotype, say, a disease. This disease may prevent people from volunteering in the study

whereas education may enthuse people to volunteer. In this scenario, collider bias occurs:

a correlation between the SNP and education appears even if the SNP does not influence

education. The sign of the bias is then harder to predict, as it depends on the sign by

which both the phenotype and the SNP of interest influence sample selection. Phenotype-

genotype-related selection can result in false positives when the true SNP effect size is zero,

or can result in incorrect effect sizes (possibly of the opposite sign) for SNPs that do have

an effect on Y.

We simulate phenotype-genotyped-related selection as follows. Under scenario 2a, selec-

tion is based on those with the 5% highest value in Z = 0.5 ·Y +0.04 ·SNP > Z∗ = PZ
95. I.e.,

Z is a factor that combines phenotypic and genotypic values. Under scenario 2b, selection

into the data set is positively influenced by the phenotype Y , but negatively by the genotype

SNP , i.e. Z = 0.5 · Y − 0.04 · SNP > Z∗ = PZ
95.

Columns 3 and 4 in Table S1 show the results of these simulations. Scenario 2a leads

to a severe underestimation of the true effect size. Selection bias here is so severe that the

estimated association, −0.062, is of the wrong sign. Scenario 2b leads to an overestimation.
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Phenotype
Population Scenario 1 Scenario 2a Scenario 2b

Selection criterion Y > Y ∗ 0.5 · Y + 0.04 · SNP > Z∗ 0.5 · Y − 0.04 · SNP > Z∗

SNP 0.041 0.006 −0.062 0.075
(0.001) (0.002) (0.002) (0.002)

Constant −0.00004 2.088 2.147 2.033
(0.002) (0.003) (0.003) (0.002)

MAF (95% CI) 0.4 [0.399:0.4003] 0.419 [0.4162:0.4223] 0.459 [0.4561:0.4623] 0.38 [0.3767:0.3827]

Observations 1,000,000 50,000 50,000 50,000
R2 0.001 0.0001 0.013 0.019

Table S1: Simulated example of spurious SNP associations due to volunteer bias. We simulate a
population of 1,000,000 individuals, with simulated phenotype Y = 0.04 ·SNP+ ε, with SNP ∈ {0, 1, 2} with
minor allele frequency p = 0.4, and an error term ε that is normally distributed with standard error 1 and
mean zero, ε ∼ N(0, 1). In this population, the true effect of the SNP on Y is 0.04. The effect of the SNP
on Y is properly identified in the full population (see column 1; standard errors in parentheses). However,
next we consider a non-randomly selected subsample that consists of the 5% of this population with the
largest simulated values Y of the phenotype, Y > Y ∗ = PY

95 (scenario 1: Phenotype-related selection). Here,
selection leads to attenuation bias in the SNP effect (column 2). Under an alternative scenario where selection
is based on those with the 5% highest value in Z = 0.5 · Y + 0.04 · SNP > Z∗ = PZ

95, i.e. Z is a factor that
combines phenotypic and genotypic values, selection leads to downward bias so severe that the estimated SNP
effect is of the wrong sign (scenario 2a: Phenotype-genotype-related selection; column 3). In Column 4, the
regression is estimated after selecting those with the 5% highest value in Z = 0.5 ·Y −0.04 ·SNP > Z∗ = PZ

95

(scenario 2b: Phenotype-genotype-related selection). In this case, the estimated SNP effect is upward biased.

The estimated effect size is 0.075, an overestimation of 87.5%.

In Table S1, selection is always assumed to be as such that those with a higher value

of Y are more likely to be selected into the data. Note that, because here we assumed the

relationship between Y and the SNP to be linear and Y to be continuous, the results would

be identical if those with lower values of Y, rather than higher values, were more likely to

be selected.

Binary phenotypes

When studying a binary phenotype, the direction of volunteer bias becomes more difficult to

predict. Consider Y a binary phenotype, and its association with the SNP being estimated

through a linear probability model. We simulate a population of 1,000,000 individuals with

SNP ∈ {0, 1, 2} with minor allele frequency p = 0.4. The binary phenotype Y is set equal

to one for the top q% of Y = 0.04 · SNP + ε, with ε ∼ N(0, 1). Hence, q is the population
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prevalence of Y . Next, sampling probabilities are determined and a selected sample of 50,000

respondents is drawn. For scenario 1, sampling probabilities for the case where Y = 1 is

oversampled are drawn such that cases of Y = 1 are sampled with double the probability

compared to Y = 0. Undersampling is similarly achieved by doubling the sampling prob-

ability of Y = 1 relative to Y = 0. For scenario 2a, sampling probabilities for the case of

oversampling are drawn by constructing Z∗ = q+0.01 ∗SNP +0.02 ∗Y , and for the case of

undersampling by Z∗ = q − 0.01 ∗ SNP − 0.02 ∗ Y . For scenario 2b, sampling probabilities

are drawn by constructing Z∗ = −0.01 · SNP + 0.02 ∗ Y for the case of oversampling, and

Z∗ = 0.01 · SNP − 0.02 ∗ Y for the case of undersampling.

Tables S2 to S6 summarize the estimated association between SNP and Y under all these

various selection scenarios. Again, the population effect (in column 1) can be interpreted

as the true association of the SNP on Y . Now, scenario 1 does not necessarily result in

attenuation bias. An overestimation of the SNP effect is also possible, depending on the

prevalence of Y in the population, and whether volunteering leads to an oversampling or

undersampling of Y .

For example, Table S2 shows a case in which a SNP raises the probability of binary

phenotype Y with prevalence 0.05 with 0.0041. Scenario 1 again corresponds to phenotype-

related selection: when the volunteer bias in the data is such that Y is oversampled, and has

prevalence 0.096 in the sample. As a result, the effect of the SNP is overestimated, which is

the opposite of the attenuation bias described for the continuous phenotype in this scenario.

This simulated case of a phenotype with population prevalence of 0.05 and oversampling in

the sampled data, is similar to the case of breast cancer in the UKB, for which we indeed

found that selection inflates rather than attenuates effect sizes of top SNPs. By contrast,

if volunteer bias in the data is such that Y is undersampled, the coefficient on the SNP is

underestimated (see column 2 of the lower frame of Table S2).

Scenario 2a and 2b are similar to the case with a continuous phenotype: Scenario 2a

leads to a negative bias in the coefficient, which could potentially result in a wrong-signed
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Population Scenario 1 Scenario 2a Scenario 2b
Oversampling SNP 0.0041 (0.00031) 0.0071 (0.0019) 0.0025 (0.00157) 0.0123 (0.00172)

Constant 0.0467 (0.00033) 0.0902 (0.00201) 0.063 (0.00177) 0.0625 (0.00166)
Observations 1000000 50000 50000 50000
R-squared 0.0002 0.0003 0.0001 0.0010
prob([Y=1]) 0.05 0.09588 0.06522 0.07104
MAF 0.4 0.4 0.44 0.35

Undersampling
SNP 0.0029 (0.00103) -0.0029 (0.00108) 0.0058 (0.00115)
Constant 0.0239 (0.00109) 0.0287 (0.00103) 0.0281 (0.00129)
Observations 50000 50000 50000
R-squared 0.0002 0.0001 0.0005
prob([Y=1]) 0.02622 0.02676 0.0332
MAF 0.4 0.34 0.44

Table S2: Simulated example of spurious SNP associations due to volunteer bias for a binary
phenotype with population prevalence 0.05. We simulate a population of 1,000,000 individuals with
SNP ∈ {0, 1, 2} with minor allele frequency p = 0.4. The binary phenotype Y is drawn by coding the top
5% of Y = 0.04 · SNP + ε, with ε ∼ N(0, 1). Next, sampling probabilities are determined and a selected
sample of 50,000 respondents is drawn. For scenario 1, sampling probabilities for the case where Y = 1
is oversampled are drawn such that cases where Y = 1 are sampled with double the probability compared
to Y = 0. Undersampling is similarly achieved by doubling the sampling probability of Y = 1 relative
to Y = 0. For scenario 2a, sampling probabilities for the case of oversampling are drawn by constructing
Z∗ = prev+0.01∗SNP +0.02∗Y , and for the case of undersampling by Z∗ = prev+0.01∗SNP +0.02∗Y .
For scenario 2b, sampling probabilities are drawn by constructing Z∗ = −0.01 ·SNP +0.02∗Y for the case of
oversampling, and Z∗ = 0.01 ·SNP − 0.02 ∗Y for the case of undersampling. Each frame of the table shows
the effect of SNP on Y as estimated by a linear regression, and its standard error in between brackets.

estimate. Scenario 2b results in a positive bias, and hence overestimation. The size and

direction of the biases is affected by both the population prevalence of Y and whether Y is

undersampled or oversampled, as is illustrated by tables Table S3 to Table S6, which show

results from the same regressions for phenotypes with different population prevalence.

Population Scenario 1 Scenario 2a Scenario 2b
Oversampling SNP 0.0118 (0.00063) 0.0195 (0.00317) 0.0104 (0.00284) 0.0137 (0.00286)

Constant 0.2405 (0.00066) 0.3841 (0.00335) 0.258 (0.00305) 0.2561 (0.00299)
Observations 1000000 50000 50000 50000
R-squared 0.0004 0.0008 0.0003 0.0005
prob([Y=1]) 0.25 0.39976 0.26652 0.26688
MAF 0.4 0.4 0.41 0.39

Undersampling
SNP 0.0094 (0.00226) 0.0101 (0.00272) 0.0118 (0.00272)
Constant 0.1356 (0.0024) 0.2234 (0.00284) 0.223 (0.00292)
Observations 50000 50000 50000
R-squared 0.0003 0.0003 0.0004
prob([Y=1]) 0.14316 0.2313 0.23266
MAF 0.4 0.39 0.41

Table S3: Results from the same simulations as in Table S2, but where the phenotype has population
prevalence of 0.25
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Population Scenario 1 Scenario 2a Scenario 2b
Oversampling SNP 0.0152 (0.00072) 0.016 (0.00303) 0.0154 (0.00322) 0.0199 (0.00323)

Constant 0.4878 (0.00076) 0.654 (0.00323) 0.4977 (0.00345) 0.4943 (0.0034)
Observations 1000000 50000 50000 50000
R-squared 0.0004 0.0006 0.0005 0.0008
prob([Y=1]) 0.5 0.6669 0.5102 0.51018
MAF 0.4 0.4 0.41 0.4

Undersampling
SNP 0.0122 (0.00305) 0.017 (0.00324) 0.0142 (0.00323)
Constant 0.3251 (0.00321) 0.4749 (0.00339) 0.4833 (0.00344)
Observations 50000 50000 50000
R-squared 0.0003 0.0006 0.0004
prob([Y=1]) 0.33474 0.48828 0.4948
MAF 0.4 0.39 0.4

Table S4: Results from the same simulations as in Table S2, but where the phenotype has population
prevalence of 0.5

Population Scenario 1 Scenario 2a Scenario 2b
Oversampling SNP 0.0131 (0.00063) 0.0068 (0.00224) 0.0118 (0.00276) 0.0085 (0.00279)

Constant 0.7395 (0.00066) 0.8536 (0.00238) 0.7469 (0.00294) 0.7452 (0.00294)
Observations 1000000 50000 50000 50000
R-squared 0.0004 0.0002 0.0004 0.0002
prob([Y=1]) 0.75 0.85904 0.7564 0.75192
MAF 0.4 0.4 0.4 0.4

Undersampling
SNP 0.0166 (0.00317) 0.0082 (0.00282) 0.0137 (0.00281)
Constant 0.5852 (0.00332) 0.7376 (0.00297) 0.7352 (0.00298)
Observations 50000 50000 50000
R-squared 0.0005 0.0002 0.0005
prob([Y=1]) 0.59834 0.74414 0.74618
MAF 0.39 0.4 0.4

Table S5: Results from the same simulations as in Table S2, but where the phenotype has population
prevalence of 0.75

Population Scenario 1 Scenario 2a Scenario 2b
Oversampling SNP 0.0042 (0.00031) 0.004 (0.00103) 0.0026 (0.00138) 0.0027 (0.00137)

Constant 0.9466 (0.00033) 0.9703 (0.0011) 0.9497 (0.00146) 0.9501 (0.00145)
Observations 1000000 50000 50000 50000
R-squared 0.0002 0.0003 0.0001 0.0001
prob([Y=1]) 0.95 0.9735 0.95178 0.95228
MAF 0.4 0.4 0.4 0.4

Undersampling
SNP 0.008 (0.00192) 0.0041 (0.00145) 0.0064 (0.00143)
Constant 0.8959 (0.00203) 0.9439 (0.00152) 0.9434 (0.00151)
Observations 50000 50000 50000
R-squared 0.0003 0.0002 0.0004
prob([Y=1]) 0.90234 0.9471 0.94852
MAF 0.4 0.4 0.4

Table S6: Results from the same simulations as in Table S2, but where the phenotype has population
prevalence of 0.95
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2 Coding of phenotypes

2.1 Age at first birth (AFB)

Age at first birth was assessed for females only and was derived from data field 2754 (“How

old were you when you had your FIRST child?”). Respondents could indicate a numerical

value, or could answer “Do not remember” or “Prefer not to answer”, in which cases the

variable was coded as missing.

2.2 BMI

We used measured BMI as reported in data field 210001.

2.3 Breast Cancer

Diabetes was derived from data field 40006 (Type of cancer: ICD10). Cases of breast cancer

were defined by codes C50.0-C50.9. As there were very few male cases of breast cancer, we

studied this phenotype only for those whose genetic sex was female.

2.4 Type 1 Diabetes (T1D)

Diabetes was derived from data field 41202 (Diagnoses - main ICD10), and, 41204 (Diagnoses

- secondary ICD10). Cases of T1D were defined by codes E10.0-E10.9.

2.5 Drinks per week

Drinks per week was constructed from data field 1568 (average weekly red wine intake), 1578

(average weekly champagne plus white wine intake), 1588 (average weekly beer plus cider

intake), 1598 (average weekly spirits intake), 1608 (average weekly fortified wine intake),

and 5364 (average weekly intake of other alcoholic drinks). These values were self-reported.

On each question, respondents could indicate “Do not know” or “Prefer not to answer”.
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We coded values for respondents who filled out these options on any of these questions as

missing, with the exception of data field 5346, for which we put a value of zero. Drinks

per week was then defined as the sum of all these data fields as reported during the first

non-missing wave.

2.6 Height

We use measured standing height (in cm) as reported in data field 50.

2.7 Health (self-reported)

For self-reported health, we use data field 2178 (“In general how would you rate your overall

health?”). Respondents could answer on a likert scale of 1-4 (1: Excellent, 2: Good, 3: Fair,

4: Poor). We inverted this likert scale such that a higher value implies better self-reported

health. Respondents could also indicate “Do not know” or “Prefer not to answer”. These

instances were coded as missing.

2.8 Physical Activity

We measure physical activity as a weighted sum of duration of moderate physical activ-

ity (data field 894) and vigorous physical activity (data field 914). Both frequencies were

self-reported and measured as minutes per day, we converted this to minutes per week by

multiplying by 7. Next, we converted this measure to the metabolic equivalent of moderate

and vigorous activity combined, by multiplying moderate activity by 4, vigorous activity by

8, and taking the sum1.

2.9 Severe Obesity

Severe obesity was derived from data field 41202 (Diagnoses - main ICD10), and, 41204

(Diagnoses - secondary ICD10). Cases of severe obesity were defined by codes E66.0-E66.9.
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2.10 Years of Education

For years of education, we follow the coding procedure as in the most recent GWAS for

educational attainment2.
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3 GWAS on the inverse probability weights

In supplementary table 4, we list the 7 genomewide significant SNPs found in our GWAS on

the IP weights, as well as suggestive top hits (P ≤ 5 · 10−5, 408 approximately independent

SNPs in total). Researchers who study these loci in the UKB, or who find that these loci pop

up in hypothesis-free approaches (e.g., GWAS) are advised to use an IP weighting procedure

to investigate whether their results are driven by volunteer bias.

We investigated the 7 top hits for UKB participation in further detail. Moving beyond

HapMap3 SNPs, we re-estimated the GWAS on the IP weights for all SNPs found in the

UKB that were in linkage disequilibirum (R2 > 0.1 and within a 500 kb window size) with

these top hits. Supplementary figure 14 maps these areas of the genome. We obtained

data on SNP-trait associations from the GWAS catalog, which has collected over 400,000

SNP-trait associations at the moment of writing3. We only include genomewide significant

findings from the catalog (P < 5 · 10−8). In supplementary figure 14, SNPs that were

associated with any other trait as reported in the GWAS catalog are annotated as such. For

example, supplementary figure 14a shows that SNPs in strong LD with lead SNP rs4399146

on chromosome 1 (one of the seven that significantly associates with our IP weights), have

been reported to associate with high-density lipoprotein cholesterol, total blood protein,

platelet count, and red blood cell distribution width. For the other 6 SNPs, we find that they

tag loci that have been reported to relate to educational attainment, alcohol consumption,

hypothyroidism, leukocyte count, lymphocyte count, autoimmune disease, and intelligence.
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4 Follow-up of new loci found by WGWAS

Using WGWAS, we found 3 independent loci that are genome-wide significant for T1D

(lead SNPs rs9861858, rs12522568, rs17186868), with associations that differed significantly

(PH < 5 · 10−8) from their GWAS counterparts. For breast cancer, we found 1 such new

independent locus (lead SNP rs2306412 ). First, we used the dbSNP database to understand

the regions in which these SNPs were located4. Three of these SNPs are intronic: rs12522568

is located on LARP1, rs17186868 is located on CABLES1, and rs2306412 is located on

ANXA5.

To assess whether these loci were tagged in other GWASs, we proceeded as follows. We

obtained data on SNP-trait associations from the GWAS catalog, which has collected over

400,000 SNP-trait associations at the moment of this writing.3 We only include genome-wide

significant findings from the catalog (P < 5 · 10−8).

To assess whether the novel loci we uncovered in WGWAS were reported as genome-

wide significant elsewhere, we considered our lead SNP (given by the lowest p-value in

the region) and re-estimated the WGWAS on the trait for all SNPs that were in linkage

disequilibrium with this lead SNP, and were available in the UKB (not just HapMap3 SNPs).

supplementary figure 15 and supplementary figure 16 show zoomed in Manhattan plots

around these lead SNPs for T1D and breast cancer, respectively. We annotated each SNP

with the traits for which significant associations were reported in the GWAS catalog, if any.

As can be seen, none of the new SNPs we found tag loci that were previously reported

for T1D or breast cancer respectively. Thus the SNPs we identified are novel. rs17186868,

found to associate with T1D in WGWAS, is in strong linkage disequilibrium R2 > 0.9

with a lead SNP that is associated with BMI-adjusted waist circumference, and in weaker

linkage disequilibrium with lead SNPs associated with body height and BMI-adjusted hip

circumference. rs12522568, found to associate with T1D in WGWAS, shows some evidence

of being in linkage disequilibrium with a lead SNP for adolescent idiopathic scoliosis.
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5 WGWAS reduces autosomal heritability of sex

In the UKB and other volunteer-based data sets, sex is significantly heritable on the auto-

some, an artifact that is indicative of sex-differential volunteer bias6. We compared heritabil-

ity estimates (on the observed scale), based on WGWAS and GWAS. The GWAS heritability

was 0.0113 (s.e. = 0.0015, p < 1× 10−8. For WGWAS, the heritability decreased to 0.0095

(s.e. = 0.003, p = 0.0015).

Although heritability was reduced after taking volunteer bias into account through WG-

WAS, significant heritability remains. This suggests that, although the weights do capture

volunteer bias present in unweighted genetic associations, some volunteer bias remains.
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6 Supplementary figures
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Full UKB
N=502,485

Only respondents that are genotyped and who identify as
“white British”, and were of genetic European ancestry

N=409,598

Only respondents with < 2% missingness in genetic data
N=403,480

Remove individuals with outlying heterozygosity (±3sd)
N=401,201

Drop respondents for whom genetic sex does not match reported sex
N=400,905

Out of sibling groups, keep only one respon-
dent (with fewest missingness in genetic data)

N=383,192

Drop respondents with missing inverse probability weights
N=376,900

Supplementary Figure 1: Summary of sample restrictions made to the UKB
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Supplementary Figure 2: Manhattan plot for the GWAS on the inverse probability weights. The
p-values are displayed on the y-axis on a −log10 scale. The red line marks the genomewide significant
threshold (P = 5× 10−8). Approximately independent genomewide significant SNPs were assessed through
clumping (R2 = 0.1, window size 250kb). These top hits are annotated.
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Supplementary Figure 3: Quantile-quantile plot for the GWAS on the inverse probability weights. λ refers
to the genomic inflation factor.
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Supplementary Figure 4: QQ plots of p-values which test for the difference between SNP associations
estimated by GWAS and WGWAS for various phenotypes, as estimated by a Hausman test (see Methods).
λ refers to the genomic inflation factor

.

(a) AgeFirstBirth

(b) Breast Cancer
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(c) BMI
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(e) Self-rated health

(f) Height

20



(g) Physical Activity

(h) Type 1 Diabetes
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(i) Severe Obesity

(j) Years of Education
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(a) AFB GWAS

(b) AFB WGWAS

Supplementary Figure 5: Gene tissue expression analysis for AFB estimated through MAGMA (implemented
in FUMA) using GWAS and WGWAS, across 54 gene sets. Only the 15 gene sets with the lowest p-value
are included in the plot. The dotted horizontal line denotes the 5% Bonferroni-corrected significance level
(correction for 54 hypotheses).
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(a) BMI GWAS

(b) BMI WGWAS

Supplementary Figure 6: Gene tissue expression analysis for BMI estimated through MAGMA (implemented
in FUMA) using GWAS and WGWAS, across 54 gene sets. Only the 15 gene sets with the lowest p-value
are included in the plot. The dotted horizontal line denotes the 5% Bonferroni-corrected significance level
(correction for 54 hypotheses).
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(a) Drinks Per Week GWAS

(b) Drinks Per Week WGWAS

Supplementary Figure 7: Gene tissue expression analysis for drinks per week estimated through MAGMA
(implemented in FUMA) using GWAS and WGWAS, across 54 gene sets. Only the 15 gene sets with the
lowest p-value are included in the plot. The dotted horizontal line denotes the 5% Bonferroni-corrected
significance level (correction for 54 hypotheses).
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(a) Self-reported health GWAS

(b) Self-reported health WGWAS

Supplementary Figure 8: Gene tissue expression analysis for self-rated health estimated through MAGMA
(implemented in FUMA) using GWAS and WGWAS, across 54 gene sets. Only the 15 gene sets with the
lowest p-value are included in the plot. The dotted horizontal line denotes the 5% Bonferroni-corrected
significance level (correction for 54 hypotheses).
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(a) Height GWAS

(b) Height WGWAS

Supplementary Figure 9: Gene tissue expression analysis for Height estimated through MAGMA (imple-
mented in FUMA) using GWAS and WGWAS, across 54 gene sets. Only the 15 gene sets with the lowest
p-value are included in the plot. The dotted horizontal line denotes the 5% Bonferroni-corrected significance
level (correction for 54 hypotheses).

27



(a) Physical Activity GWAS

(b) Physical Activity WGWAS

Supplementary Figure 10: Gene tissue expression analysis for Physical Activity estimated through MAGMA
(implemented in FUMA) using GWAS and WGWAS, across 54 gene sets. Only the 15 gene sets with the
lowest p-value are included in the plot. The dotted horizontal line denotes the 5% Bonferroni-corrected
significance level (correction for 54 hypotheses).
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(a) Severe Obesity GWAS

(b) Severe Obesity WGWAS

Supplementary Figure 11: Gene tissue expression analysis for Severe Obesity estimated through MAGMA
(implemented in FUMA) using GWAS and WGWAS, across 54 gene sets. Only the 15 gene sets with the
lowest p-value are included in the plot. The dotted horizontal line denotes the 5% Bonferroni-corrected
significance level (correction for 54 hypotheses).
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(a) Type 1 Diabetes GWAS

(b) Type 1 Diabetes WGWAS

Supplementary Figure 12: Gene tissue expression analysis for Type 1 Diabetes estimated through MAGMA
(implemented in FUMA) using GWAS and WGWAS, across 54 gene sets. Only the 15 gene sets with the
lowest p-value are included in the plot. The dotted horizontal line denotes the 5% Bonferroni-corrected
significance level (correction for 54 hypotheses).
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(a) Years of Education GWAS

(b) Years of Education WGWAS

Supplementary Figure 13: Gene tissue expression analysis for years of education estimated through MAGMA
(implemented in FUMA) using GWAS and WGWAS, across 54 gene sets. Only the 15 gene sets with the
lowest p-value are included in the plot. The dotted horizontal line denotes the 5% Bonferroni-corrected
significance level (correction for 54 hypotheses).
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Supplementary Figure 14: Zoomed in Manhattan plots of GWAS associations with the UKB
inverse probability weights. Here, we focus on all SNPs that are in linkage disequilibrium (R2 > 0.1,
500 kb) with one of the 7 identified lead SNPs for the IP weights (P < 5 · 10−8). SNPs that have been
found to significantly associate with other traits as found in the GWAS catalog (P < 5 · 10−8) are annotated
with this trait. The dotted horizontal line shows the genomewide significance level on the negative log scale.
Each dot in the plot shows the p-value and base pair position of the association between a SNP (in linkage
disequilibrium with the lead SNP) and the IP weights. The lead SNP is depicted by the cross. Each dot’s
color reflects the level of linkage disequilibrium with the lead SNP, as measured by the R2.
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Supplementary Figure 15: Zoomed in Manhattan plots of WGWAS associations with type 1
diabetes. Here, we focus on all SNPs that are in linkage disequilibrium (R2 > 0.1, 500 kb) with one of
the 3 newly identified lead SNPs for type 1 diabetes as found in WGWAS (P < 5 · 10−8 in WGWAS and
PH < 5 ·10−8). SNPs that have been found to significantly associate with other traits as found in the GWAS
catalog (P < 5 · 10−8) are annotated with this trait. The dotted horizontal line shows the genomewide
significance level on the negative log scale. Each dot in the plot shows the p-value and basepair position of
the association between a SNP (in linkage disequilibrium with the lead SNP) and type 1 diabetes. The lead
SNP is depicted as the cross. Each dot is colored by the level of linkage disequilibrium with this lead SNP,
as measured by the R2.
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Supplementary Figure 16: Zoomed in Manhattan plot of WGWAS associations with breast cancer.
Here, we focus on all SNPs that are in linkage disequilibrium (R2 > 0.1, 500 kb) with the newly identified
lead SNP rs2306412 as found in WGWAS (P < 5 · 10−8 in WGWAS and PH < 5 · 10−8). None of these
SNPs were found to significantly associate with other traits as found in the GWAS catalog (P < 5 · 10−8).
The lead SNP is depicted as the cross. Each dot is colored by the level of linkage disequilibrium with this
lead SNP, as measured by the R2.
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