USCDornsife USC Schaeffer

Centerfor FEconomic Leonard D. Schaeffer Center
and Social Research for Health Policy & Economics

Sampling and weighting the
Understanding America Study

Marco Angrisani, Arie Kapteyn, Erik Meijer,
Htay-Wah Saw

Paper No: 2019-004

CESR-SCHAEFFER
WORKING PAPER SERIES

The Working Papers in this series have not undergone peer review or been edited by USC. The series is
intended to make results of CESR and Schaeffer Center research widely available, in preliminary form,
to encourage discussion and input from the research community before publication in a formal, peer-
reviewed journal. CESR-Schaeffer working papers can be cited without permission of the author so long
as the source is clearly referred to as a CESR-Schaeffer working paper.

cesr.usc.edu healthpolicy.usc.edu



Sampling and weighting the Understanding America Study

Marco Angrisani, Arie Kapteyn, Erik Meijer, and Htay-Wah Saw™
Center for Economic and Social Research, University of Southern California

October 16, 2019

Abstract

The Understanding America Study (UAS) is a probability-based, nationally representative
internet panel. This document describes the methods used for sampling and weighting UAS
surveys. UAS members are drawn from multiple sampling frames, and new batches of are
added regularly. For most batches, we use an adaptive sampling algorithm, by first drawing
zip codes whose distributions complement the distributions in the panel and then randomly
sampling addresses from the United States Postal Service’s Delivery Sequence File within
the selected zip codes. Accordingly, weights are constructed in two stages. In the first stage,
we construct base weights that account for differences in the sampling strategies for different
frames. In a second stage, we construct poststratification weights to adjust for selective
nonresponse.

1 Introduction

The Understanding America Study (UAS) (Alattar, Messel, & Rogofski, 2018)) is a nationally
representative internet panel of the civilian noninstitutional population age 18 and over in the
U.S. (50 states and D.C.). It started in 2014 and it has been expanded since. It consists of a
number of subpanels that are drawn from different sampling frames. It uses an adaptive sampling
approach to keep the subpanels representative of their target populations even in the face of selective
nonresponse and attrition. Nevertheless, like almost every survey, the UAS uses sampling weights
to adjust for imbalances in the distribution of demographics and socio-economic variables. This
document describes the details of the sampling methods used and how the weights are constructed.
See[Tourangeau, Brick, Lohr, and Li| (2017) for an overview of adaptive sampling and |Lohr| (2009))
for a review of multiple frame samples and how to weight them.

*We like to thank Mick Couper and Jon Krosnick for their insightful and valuable comments throughout the
development of the UAS weighting procedure described in this document.



Table 1: UAS batches and frames

Batch(es) Frame Weights
1 1. Nationally representative (simple random sample) Yes
2,3 2. Native American (stratified 2-stage) Partly
4 3. Los Angeles County young mothers (list sample) No
5-12 4. Nationally representative (2-stage, fixed) Yes
13, 14, 18,19 5. Los Angeles County (2-stage) Yes
15,16 6. California (2-stage) Yes
17 7. Nationally representative (2-stage, pps) Yes

Note. “fixed” indicates a fixed number of sampled households per zip code. “pps” indicates that the number

of sampled households is proportional to the number of households in a zip code.

2  Sampling

The UAS is sampled in batches. As of June 2019, there are 19 batches. Table[T|gives an overview.
As mentioned above, the UAS draws from multiple frames, but each batch draws from only one
frame. Most batches use a two-stage sample design, in which zip codes are drawn first, and then
households are randomly drawn from the sampled zip codes. The exceptions are batches 1 and 4,
which drew simple random samples from lists. For batch 1, we used the list of all individuals in the
database of the vendor ASDE. For batch 4, we used all addresses listed on birth certificates issued in
Los Angeles County in the years 2009-2012, subsetted to a certain set of zip codes. When sampling
from a list of addresses, we initially contact one person per household. Cpmplete documentation
about the UAS recruitment procedure can be found at https://uasdata.usc.edu/page/Recruitment.

We provide weights for all batches, except batch 4 and non-Native American households
in batches 2 and 3.

The three nationally representative frames represent the same population (the whole U.S.). In
terms of populations, California is a subset of the U.S., and Los Angeles County is a subset of
California. So these are fully nested. Native Americans are also a subset of the U.S., and they
partially overlap with the other subsets.

The remainder of this section discusses our adaptive sampling algorithm for drawing a new
batch, given the composition of the UAS at the time of sampling.

2.1 Basic notation and definitions

We look at the marginal distributions of categorical variables and how adding a new batch changes
these. This is without loss of generality, because the joint distribution of two or more categorical
variables is the marginal distribution of a new categorical variable that has one category for each
combination of categories for the original variables. Let the number of variables of interest be M,
and be indexedby m = 1,..., M.

The marginal distribution of variable m in the existing panel consists of the fractions f,,;,
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Jj=1,...,J,. Thatis, f,; is the number of panel members with value j of variable m divided
by the total number of panel members. If desired, this (and all related concepts) can be defined
on a subset of the panel, such as active panel members, active panel members living in the State
of California, or active panel members living in Los Angeles County (these are the most common
subsets we will consider). The number of relevant panel members is ng. Hence, the number of
relevant panel members in category j of variable m is no,,; = no fn;.

Analogously, the marginal distribution of variable m in the population of interest consists of
the fractions g,,;, j = 1,...,J,, and the marginal distribution of variable m in the population of
zip code k consists of the fractions hyj, j = 1,...,Jn.

2.2 Sampling from a zip code

Suppose we draw a simple random sample of size n; from zip code k. In expectation,
Mkmj = Nihgmj of the individuals in the sample will have value j of variable m. Not all of
these will eventually become panel members. Let r,,; be the response rate (fraction of those
sampled who will become panel members) in category j of variable m[f] Then, in expectation,
this sample will add nox,j = nihimjrm; individuals in category j of variable m. Hence, once
the recruitment is completed, we expect to have 7,,,; = nom; + nokm; individuals in category j of
variable m and 7 = ng + ny; panel members, where
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which should not depend on m. Consequently, in expectation, the fraction of the sample that is in
category j of variable m after drawing zip code k will be
Amj 10 fmj + 1 himjrmg

fkmj = = 7 .
o ng+ny Xy Pkmerme

2.3 Desirability criteria

Our goal is to draw a probability sample with potentially unequal probabilities such that the panel
likely becomes more representative of the population of interest. To operationalize this, we need
a measure of representativeness and a function that translates this into a probability of drawing a
zip code.

For the Native American batches, we used a measure of effective sample size (ESS) as our
measure of representativeness. See Appendix[Blfor its description. For the nationally representative
batches (5-12, 17 at the time of writing), Los Angeles County batches (13, 14, 18, 19), and

'We could allow for response rates that vary by zip code, but for the most part, we will assume a constant response
rate.



California batches (15, 16), we used a Pearson chi-square ( )(2) measure, defined as

D( M Jm fm} gm])
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Thus, for each prospective zip code k, we compute the measure Dy = D(f,g). The probability
of drawing zip code k is then a function of Dy. For the ESS criterion, larger values are more
desirable, so the probabilities should be increasing in ESS. For the y? measure, smaller values are
more desirable, so the probabilities should be decreasing in Dy.

2.4 Probability of drawing a zip code

The probability of drawing a zip code should be a monotonically increasing function of its
desirability score (ESS or y?). However, we have no theory indicating what the specific form
of this relation should be. Choosing the “most desirable” zip code leads to a nonrandom algorithm
and, in general, may be prone to distortions if this zip code is unusual on dimensions that are not
considered. Hence, we prefer a relation that is “not too flat” and “not too steep.” That is, there is
sufficient randomness, but not so much that the sampling is indistinguishable from simple random
sampling, and the sample is not pushed toward representativeness. In Appendix [A]l we report
results from some simulations in which we considered various criteria and various values of their
tuning parameters. We found that the following algorithm gave satisfactory results:

1. Compute the quantile QO of Di. That is, the zip code with the smallest value of Dy gets
Or = 1/K, the next gets Qr = 2/K, and so forth, and the least desirable zip code gets

Or = 1.
2. Compute the utility function
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o
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where a is a tuning parameter. For all values of a, Uy, is a decreasing function of Q. We
found that a = 1.5 is satisfactory. With this value, Uy has positive values. It decreases
steeply for small values of Oy and more gradually for larger values of Qy, thus favoring zip
codes with small Qy but giving fairly even chances for all other zip codes. Because Qy is
monotonically increasing in Dy, zip codes with small Dy (more desirable) are favored.

3. Compute wi = b + Uy, where b is chosen such that the ratio between the highest and lowest
value of wy is equal to R, which is a tuning parameter that we can choose. Based on our
simulations, we chose R = 100. Given our choice of functions and tuning parameters, all
wy are strictly positive.

4. Compute py = wy/ Zf: | we. The probability of drawing zip code k is py.
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2.5 Practicalities and population size

Suppose that, starting from the distributions f, g, and {/;}, we concatenate the fractions for the
different dimensions m and then rescale such that the fractions sum to 1. That is, the pair (m, j)
is mapped to a unique index u, say, and ﬁ, = fmj/M, and analogously for the other distributions.
The resulting vectors £, g, and {/;} then have all the properties of a one-dimensional distribution.
If we use these in our computations, this leaves all results essentially unchanged. Specifically, this
results in desirability measures Dy = Dy /M, but these result in the same quantiles QO as in the
original definition and thus the same probabilities of drawing the zip codes. Doing this has some
computational advantages.

For the nationally representative, LA County, and California batches, we use the distributions
of the following characteristics:

* sex X age X race/ethnicity: {male, female} x {18-34, 35-44, 45-54, 55-64, 65+} X
{non-hispanic white alone, non-hispanic black alone, non-hispanic Native American alone,
non-hispanic Asian alone, other non-hispanic, hispanic};

* sex X age X marital status: {male, female} x {18-34, 35-44, 45-54, 55-64, 65+} X
{married, divorced/separated, widowed, never married};

* sex X age X education: {male, female} x {18-34, 35-44, 45-64, 65+} X {less than high
school, high school/GED, some college/associate’s degree, college graduate, postgraduate};

* population size X urbanicity: {five quintiles} X {rural, mixed, urban} (starting with batch
13);

* region: {LA County, rest of CA, rest of the U.S.} (starting with batch 15).

These choices are partially based on what is available in the ACS 5-year zcta-level files, which we
use to estimate the distributions Ay of the zip codes, and partially based on practicalities of what
categories are expected to give reasonable cell sizes in the sample. Population size, urbanicity,
and region are zip code level variables, but we compute their distributions weighted by population
size to make them comparable to the corresponding distributions in the panel.

Initially, the algorithm had a tendency to draw small zip codes. A plausible explanation for this
is the law of large numbers: if the U.S. population were randomly allocated to zip codes, the larger
zip codes would tend to have “average” characteristics, whereas smaller zip codes would span
a wider range from “undesirable” to “desirable”. The desirable small zip codes would be more
likely to be drawn. Therefore, starting with the LA County 2 batch (batch 13), we have added zip
code population size quintile by urbanicity as an additional variable used in evaluating desirability,
which should help counterbalancing this. In batches 14, 18, and 19 (LA County 3-5), we have
implemented a further variation on the sampling scheme that tackles this directly. Specifically, the
sampling probabilities of the zip codes are now computed as px = Nywy/ Zle Newye, where Ny
is the population size (initially number of residents age 18+, now number of households) of the



zip code. Thus, if wy were constant, this would be proportional to size sampling. Because the wy
are not constant, this is not proportional to size sampling, but it is in the same spirit. In batches
15-17, instead of adjusting the sampling probability at the zip code level, we drew the number
of addresses per zip code proportional to size, which has a similar effect but draws a more even
fraction of the population from each sampled zip code.

For most batches, we drew zip codes without replacement (within and across batches). However,
because the number of zip codes is small relative to sample size for the LA County batches, we
draw them with replacement. The number of addresses we drew per zip code in each batch was
40, except for the LA County batches, where we drew 10 per zip code each time the zip code was
drawn, and the batches where we drew the number of addresses proportional to size. There, the
target average number of addresses was 40.

3 Base weights

The procedure to sample zip codes in the batches that use two-stage sampling has been refined over
time, but we treat this as random variation within each frame. Hence, for constructing weights, we
combine the batches that use the same frame as indicated in Table[I] Because the second stage of
the two-stage sampling differs between batches 5-12 (40 addresses per zip code) and 17 (number
of addresses proportional to number of households per zip code), we treat these as separate frames.
There are some variations in the procedure between frames that we also take into account explicitly.

The procedure for constructing base weights follows the discussion in|Lohr (2009, section 2.4).
It consists of these steps:

1. Estimate the probability 7y |s of drawing zip code k in sampling frame s with a logit model
that uses zip code characteristics as regressors. The characteristics used are Census region,
urbanicity, zip code population, and demographic distributions (gender, age, race-ethnicity,
marital status, education). For the frames that use single stage sampling, we treat the whole
list as a single zip code and thus mx |, = 1. The Los Angeles County two-stage frame uses
with-replacement sampling of zip codes, and this requires an adaptation that estimates the
expected number of times a zip code is drawn instead (see Appendix [E).

2. Estimate the probability 7j,|sx of drawing household / conditional on its zip code k being
drawn, in sampling frame s. This is equal to the number of households sampled divided by
the number of households in the zip code.

3. The marginal probability that household 4 from zip code k is sampled in frame s is then
Thk|s = Th|skTk|s- 1gnoring the negligible probability that a household is sampled multiple
times (in multiple samples), the overall probability that household / from zip code k is
sampled in any sample is 7p, = 3 7k |s. Note that computing this requires the computation
of the counterfactual conditional probabilities of being sampled in a different frame from
the one the household was actually drawn from. Some of these may be zero, for example,



the probability that a household from Colorado is drawn from the California frame is zero,
but this does not hold for other batches or households.

4. The raw base weight is w3 = 1/mpk.

5. We calibrate the raw base weights to match known subpopulation totals. To this end, we
construct a minimal set of mutually exclusive and exhaustive subpopulations such that each
frame is the union of one or more of these subpopulations. Let g = 1,...,G denote these
subpopulations.

Compute calibrated base weights as w = Agw;%, where the correction factor Ag is

hk hk
such that the weights wf;}(l for subpopulation g sum to the number of households in this

subpopulation as estimated from the American Community Survey (ACS).

6. Compute relative base weights wb2¢ = Bw where the constant B is chosen such that the

hk hk
weights w;’l";:e sum to the number of sampled households, and thus the average base weight

in the drawn sample is 1.

In order to generate sample weights for each UAS survey, we compute poststratification weights,
using wzfe as the base weight in a raking procedure. This second step is discussed in detail in
Section[3

Note that it is implicit in the procedure described above that the goal is to combine the samples
from the different frames into a single sample with a single sampling weight. An estimator using
this weighted sample is called a single-frame estimator (Lohr, 2009, section 2.4). This is not
necessarily the preferred approach in terms of statistical efficiency. Most of the literature on
multiple-frame sampling discusses estimators that are optimal combinations of separate estimators
by frame and subpopulation (Lohr, 2009, section 2.2). Typically, because optimality depends on
the variances and covariances of the estimators, for different parameters the optimal combination
will be different. For our purposes, however, this is very impractical. We disseminate each survey
as a single dataset with a single weight. Hence, the single-frame weight is preferred on practical
grounds, while still statistically sound.

3.1 Incorporating the Native American batches

The Native American batches introduce some complications. In sampling these, the list of zip
codes was reduced to zip codes with at least 5% of the population American Indian or Alaska
Native (AIAN). Sampling was stratified by whether the zip code was in an “American Indian
Area” according to the Census Bureau or not. Zip codes in which this information was missing,
or that were mixed, were excluded. Also, zip codes with missing information about urbanicity
were excluded | The resulting set of zip codes formed the population from which zip codes were

2Zip codes that had missing information about population size or fewer than 100 residents were also excluded, but
this holds for all batches that draw zip codes.



sampled. Sampling was done from two strata: stratum 1 contained American Indian Areas and
stratum 2 other zip codes. Based on estimates of the Native American population in both strata,
it was decided to draw 50 zip codes from stratum 1 and 371 from stratum 2, to obtain about one
third of our sample from American Indian Areas, which roughly corresponds to the population
fraction among AIANs. Within each stratum, a variant of our sampling algorithm was used that
oversampled zip codes that would increase the effective sample size relative to cost the most. The
variables used in this were Census Division (the nine state groupings used by the Census Bureau),
urbanicity (urban, rural, mixed), population size, and fraction of the population that is AIAN. See
Appendix [B|for more details.

The list of drawn zip codes was submitted to the vendor ASDE, which limited their database to
these zip codes and drew a simple random sample of 10,000 individuals from this subset. Hence,
in expectation, the sample sizes in each zip code are proportional to the population sizes. We used
a random 5,000 out of these 10,000 sampled individuals for batch 2. For batch 3, we excluded the
zip codes drawn for batch 2 and drew another sample in the same way.

For constructing the base weights, this has the following consequences:

* The probability of drawing a zip code is estimated separately for Al Area and non-Al Area
zip codes.

 Covariates for estimating the probability of selecting a zip code within these strata are Census
Division, urbanicity, log population size, and the log of the AIAN fraction of the population.

* The probability that a household from zip code k is sampled conditional on the set of sampled
zip codes is approximately 2 x (5,000/10,000) x (10,000/N*) where N* is the population
size of the combined 2 X (50 + 371) = 842 zip codes that were drawn.

Non-Native Americans were not eligible to become panel members[s| We accidentally invited
some of them a year later to become panel members, which led to a number of non-Native
Americans recruited through Native American batches joining the UAS. Because we are unable
to attach a probability to this happening, these panel members receive a weight of zero and, for
the purpose of creating base weights, the probability of recruiting non-Native Americans in Native
American batches is considered to be zero.

3.2 Los Angeles County young mothers

This subsample of the UAS (batch 4) was a simple random sample from a list of women who
had given birth in Los Angeles County between 2009 and 2012 in zip codes around restaurants
participating in a healthy menu options project. The invitation was extended to anyone living at
the address at the time of sampling. Because of the highly specific nature of the subsample, we do
not provide weights for members recruited within this batch.

3At this stage, we used a wider definition of “Native American,” which included Native Hawaiians and Pacific
Islanders in addition to AIANSs.



Table 2: Subpopulations with their estimated number of households and batches that were
(partially) drawn from them

Region NA zip Households Batches

Total NA Non-NA
LA County yes 29,518 1,716 27,802 1-3,5-19
LA County no 3,249,074 66,762 3,182,312 1, 5-19
Other CA yes 133,710 7,325 126,385 1-3,5-12, 15-17
Other CA no 9,394,863 267,292 9,127,571 1,5-12,15-17
Non-CA yes 2,562,811 352,386 2,210,425 1-3,5-12,17
Non-CA no 102,345,040 1,771,871 100,573,169 1,5-12,17

Subtotals and totals

CA incl. LAC yes 163,228 9,041 154,187
CA incl. LAC no 12,643,937 334,054 12,309,883
U.S. total yes 2,726,039 361,427 2,364,612
U.S. total no 114,988,977 2,105,925 112,883,052
LA County any 3,278,592 68,478 3,210,114
Other CA any 9,528,573 274,617 9,253,956
Non-CA any 104,907,851 2,124,257 102,783,594

CA incl. LAC any 12,807,165 343,095 12,464,070
U.S. total any 117,715,016 2,467,352 115,247,664
Note. NA = Native American

3.3 Subpopulation totals

Table [2| shows the subpopulation totals for the subpopulations g used, as discussed above. These
totals have been estimated from the 2012-2016 5-year average ACS file.

3.4 Sampling over time and dynamic populations

The construction of the base weights implicitly assumes a one-time sample from a well-defined
population. However, the UAS is a panel that has grown (and continues to grow) over time, and
surveys in the UAS are done on a regular basis. This has various potential consequences for the
sampling and weighting.

* Dynamic populations: mortality, “births” (i.e., individuals turning 18), and migration mean
that populations are changing. We assume that this is slow enough that it does not affect
the composition of our population(s) of interest. However, specific individuals regularly
move into and out of populations, especially subpopulations. For example, individuals



sampled as part of the LA County batches may not live in LA County anymore. The
base weights do not depend on specific individuals currently in a given survey, but rather
the households that were sampled, whether or not they responded and became UAS panel
members. Hence, the base weights are computed for the frame and population they were
in at the time of sampling. In contrast, the poststratification weights for a given survey use
current characteristics, population membership, and marginal distributions (from the CPS).
A related issue is that zip codes are sometimes updated. Technically, we are not using zip
codes in the sampling but zip code tabulation areas (zcta). These do not change very often,
typically once every 10 years with a new census, and even then most zcta’s stay the same.
So this is not currently a problem and we do not expect this to become a problem in the next
few years.

* Changing panel composition. Drawing a new batch changes the base weights of all batches.
This also means that which base weights should be used in the raking of a specific survey
depends on when the survey was administered, which batches were included in the sample
of panel members that were invited for the survey, and other selection criteria. As far as the
latter are concerned, UAS surveys typically use three different references samples:

— Nationally Representative batches only (NR)
— All batches excluding Native American batches (All_noNA)

— All batches including Native American batches (All)

To address this, we compute a separate set of base weights for surveys in which the reference
sample is NR, All_noNA, or All. For each of these sets, we compute multiple base weight
variables, depending on which batches were invited to the survey. Consider, for example,
two surveys based on NR. Suppose that one only includes batch 1, while the other includes
batch 1 and batches 5-12. These two surveys will have different base weights, reflecting that
for both the reference sample was NR, but different batches were included.

Formally, for each survey w;’lfe = wz‘;‘fe(Z, b), where ¥ € {NR,All_noNA,All} and b

indicates that only batches up to b were invited to the survey.

4 Sample Selection for UAS Surveys

The selection of UAS members who are invited to take a survey follows these steps:

1. Identification of reference sample .

In this step, we determine whether respondents should be chosen from Nationally
Representative batches only (NR), all batches excluding Native American batches
(All_noNA), or all batches without restrictions (All)
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2. Identification of included batches b.

Once the reference sample X has been determined, the exact batches from which survey
invitees are chosen from is represented by all available batches within X at the time the
sample selection is performed.

3. Selection of survey invitees.

Assuming that the target sample size for a specific survey is T and the expected response rate
is r, a random sample of size 7/r (approximated to the nearest integer) is selected within the
reference sample X and available batches b. We use a constant response rate across surveys
calculated as the average response rate across all UAS surveys in the last year.

Based on the above steps, the appropriate set of base weights for each specific survey,
Zfe = w;’lfe(E, b), is identified as a function of the reference sample X and the available batches
b which survey invitees were drawn from.

Several “core" or “general" surveys are administered to all existing panel members. In this
case, X = All and b is all available recruitment batches in the UAS. As of September 2019, the
appropriate set of base weights for a “core” or “general" survey would be wz*;:e = w;’lfe(All, 19). It
is worth reminding that w%¢ = 0 for batch 4 and non-Native Americans recruited through Native

hk
American batches.

w

5 Poststratification

Due to selective nonresponse, the sample of actual respondents may have different characteristics
than the population of interest, even after correcting for different sampling probabilities through
the base weights. Therefore, surveys typically perform another step of weighting, matching
distributions of (usually) demographic characteristics to external distributions. This is called
poststratification[¥] We do this as well in the UAS.

In this second step, we perform raking weighting (also known as iterative marginal weighting),
starting from the base weights, w};e]‘je, described above. With this, we assign poststratification
weights to survey respondents such that the weighted distributions of specific socio-demographic
variables in the survey sample match their population counterparts (benchmark or target
distributions).

The benchmark distributions against which UAS surveys are weighted are derived from the
Current Population Survey (CPS) Annual Social and Economic Supplement (ASEC) administered
in March of each year. We use the latest available CPS-ASEC at the time a survey is completed.
Since the CPS-ASEC becomes available at the end of each year, typically there exists a mismatch

“Sometimes, the term poststratification is used in a more narrow sense, only applying to cell-based weighting as
opposed to raking, which we actually perform. For example, |Valliant, Dever, and Kreuter] (2013| sec. 14.2) make this
distinction and call the whole class of weighting methods that uses external information calibration, which then includes
both poststratification and raking as special cases.

11



Table 3: Recoded variables for poststratification

Recoded variable Categories

Gender 1. Male; 2. Female

Age 1. 18-39; 2. 40-49; 3. 50-59; 4. 60+

Born in the US 0. No; 1. Yes

US citizen 0. No; 1. Yes

Education 1. High school or less; 2. Some college; 3. Bachelor or more
Native American 0. No; 1. Yes

Race-ethnicity 1. White; 2. Black; 3. Others; 4. Hispanic

Census region? 1. Northeast; 2. Midwest; 3. South; 4. West

Urbanicity? 1. Rural; 2. Mixed; 3. Urban

Marital status 1. Married; 2. Separated/divorced/widowed; 3. Never married
Work status 1. Working; 2. Unemployed; 3. Retired; 4. On leave, disabled, other
Household composition 1. 1 Member; 2. 2 Members; 3. 3 or 4 Members; 4. 5 or More Members

Household income 1. <$30,000; 2. $30,000-$59,999; 3. $60,000-$99,999; 4. $100,000+

“Census regions are obtained from the respondent’s zip code of residence.
b Urbanicity is obtained from the respondent’s zip code of residence.

of one year between the year of survey completion and the year of the CPS-ASEC used to derive
benchmark distributions. We provide updated weights based on the same CPS-ASEC year as the
one of survey completion to users on request.

Unless otherwise required by the aims of the survey and specified in the sample selection
process, the reference population for UAS surveys is the U.S. population of adults, age 18 or older,
excluding institutionalized individuals and military personnel.

5.1 Categorization and imputation of raking factors

For poststratification weighting purposes, we use demographic information taken from the most
recent My Household survey, which is answered by all active UAS members every quarter. All
socio-demographic variables in the My Household survey are categorical, but some, such as age,
education, and income, take values in a relatively large set. We recode all socio-demographic
variables considered for poststratification into new categorical variables with no more than 5
categories. The aim of limiting the number of categories is to prevent these variables from forming
strata containing a very small fraction of the sample (less than 5%), which may cause sample
weights to exhibit considerable variability.

The list of all recoded categorical variables that may be used to generate poststratification
weights is reported in Table[3] As explained below, default poststratification weights are produced
using a predefined set of socio-demographic variables. Upon request, custom poststratification
weights can be produced using an alternative set of socio-demographic variables chosen among
those listed in Table[3l

12



Because the raking procedure can only be applied to nonmissing data, we impute missing
values of socio-demographic variables according to the following sequential scheme:

e Gender is obtained from administrative information.

* When age is missing, we use the age range variable from the My Household survey to impute
age categories. If the age range is also missing, the gender-specific sample mode is used.

* Once age categories have been imputed (if missing), the variable with the fewest missing
values is the first one to be imputed by means of a regression featuring gender and the age
categories as regressors. This newly imputed variable is then added to the set of regressors
to impute the variable with the second smallest number of missing values. The procedure
continues in this fashion until the variable with the most missing values is imputed using
information on all other available socio-demographic variables.

For binary indicators, such as Born in the US and US citizen, missing values are imputed using
a logistic regression. For ordered categorical variables, such as education, household composition,
and household income, missing values are imputed using an ordered logistic regression. For
unordered categorical variables, such as marital status, race-ethnicity, and work status, missing
values are imputed using a multinomial logistic regression. Census region and urbanicity are never
missing, as they are obtained from respondents’ zip codes of residence.

Each UAS survey data set including sample weights also contains a binary variable (imputation
flag) indicating whether any of the recoded socio-economic variables used for poststratification
has been imputed or taken from administrative data not available to data users. As of September
2019, this variable takes value 1 for 0.13% of UAS members.

5.2 Raking and trimming algorithm

As mentioned above, we use raking to generate poststratification weights. This procedure involves
the comparison of target population relative frequencies and sample relative frequencies on a
number of socio-demographic variables independently and sequentially. More precisely, starting
from the base weights, at each iteration of the algorithm weights are proportionally adjusted
so that the distance between survey and population marginal distributions of each selected
socio-demographic variable (or raking factor) decreases. The algorithm stops when survey and
population distributions are perfectly aligned. A maximum of 50 iterations is allowed for perfect
alignment of survey and population distributions to be achieved. If the process does not converge
within 50 iterations, no sample weights are returned and attempts using different raking factors are
made.

Our raking algorithm trims extreme weights in order to limit variability and improve efficiency
of estimators. We follow the general weight trimming and redistribution procedure described by
Valliant et al.| (2013, p. 388). Specifically, we define N = Ny, + Ny the total sample size, where
Ny, is the number of respondents who receive a weight, and Ny, includes respondents belonging
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to batch 4 and respondents from non-Native American households belonging to batches 2 and 3,
who do not receive a weight. Indicating with wlFak the raked weight of respondenti = 1,..., N,
the sample average of the raked weights is

Ny,

_ 1
Wrak — N Z W;ak,
w =

which is used to perform the following operations:

» We set the lower and upper bounds on weights equal to L = 0.25w™ and U = 4wk,
respectively. These are in line with those often mentioned in the literature and adopted by
other surveys (Battaglia, Hoaglin, & Frankel, 2009).

* We reset any weights smaller than the lower bound to L and any weights greater than the
upper bound to U:

L, ifw <L
wit = ik f [ < witk < U

2
U, ifwi>U.

* The amount of weight lost by trimming is
Ny
whost — Z(erak _ W;Hm),
i=1

and distribute it evenly among the respondents whose weights are not trimmed.

While the raking weights match population distributions of selected variables, the trimmed
weights typically do not. We therefore iterate the raking and trimming until poststratification
weights are obtained that respect the weight bounds and align sample and population distributions
of selected variables. This procedure stops after 50 iterations if an exact alignment respecting the
weight bounds cannot be achieved. In this case, the raked weights will ensure an exact match of
(weighted) survey relative frequencies to their population counterparts, but the weights may take
values outside the interval defined by the prespecified lower and upper bounds.

5.3 Final poststratification weights

Indicate by wfmt the final poststratification weight for respondent i, obtained by applying the raking

algorithm to the base weights and after iterating the raking/trimming procedure as described above.
UAS survey data sets include final poststratification weights relative to their sample mean.
That is, they include
post

final _ i
i Ny
1 Z post
Ny J

J=1

w
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for the Ny, respondents who receive a weight, and wlﬁ“al = 0 for the N,y respondents who do not.

Hence, relative final poststratification weights sum to the size of the sample of respondents who
receive a weight in each survey, N, and average to 1 within that sample.

5.4 Default weights

By default, all UAS surveys are weighted using the following set of raking factors (as defined
in Table [3): gender, race-ethnicity, age, education, and Census region. For surveys that include
respondents from Native American batches, the Native American indicator is added to the default
set of raking factors.

We have carried out extensive testing and concluded that raking weights produced by this
combination of factors perform well across different dimensions. In particular, they exhibit
moderate variability, thereby leading to better precision of weighted estimators, and lead to a
satisfactory match of the distributions of variables not used as raking factors, thereby improving
overall representativeness. Our Monte Carlo studies have shown that these desirable properties are
robust to sample sizes ranging from 500 to 2,000 respondents, an interval that includes most of the
UAS surveys.

Table 4| shows the distributions of raking factors in the entire UAS sample as of September
2019. In column 1, we report unweighted percentages, in column 2 the percentages after applying
base weights, and in column 3 the percentages after applying final weights. By construction, these
match population benchmarks, which are taken from the 2018 CPS. The unweighted sample size
(excluding respondents from bacth 4 and non-Native Americans recruited through Native American
batches) is 7,787 and the effective sample sizes using base weights and final poststratification
weights are 3,893 (51% of 7,787) and 3,660 (47%), respectively.

Table 3 shows the distributions of some of the variables described in Table[3|that were not used
as raking factors. In column 1, we report unweighted percentages, in column 2 the percentages
after applying the final weights, and in column 3 the percentages in the population (taken from the
CPS-ASEC 2018 for all variables, except for the urban indicator, whose benchmark is taken from
the 2017 ACS).

Completed surveys with default weights are available for download on the UAS webpage. Each
survey data set contains the following variables generated by the weighting procedure: base weight,
imputation flag, CPS year used, final weight.

5.5 Custom weights

On request, we provide custom weights to users. These can be obtained by choosing which
socio-demographic variables, among those listed in Table[3] should be used by the raking algorithm
to generate poststratification weights.

Raking can then be performed on one-way marginals, by matching population distributions of
single socio-demographic variables, such as gender or education, as well as on two-way marginals,
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Table 4: Unweighted and weighted distributions of the raking factors (%)

Variable Unweighted Weighted with
Base weights  Final weights®
Male 41.58 44.11 48.36
Race-ethnicity
White 63.55 73.65 63.39
Black 7.97 9.58 11.93
Other 10.47 7.83 8.51
Hispanic 18.01 8.94 16.17
Native American 7.71 5.21 2.50
Age (years)
18-39 32.39 28.35 38.02
40-49 18.63 19.07 16.12
50-59 19.43 20.22 17.15
60+ 29.55 32.36 28.71
Education
High school or less 23.21 19.44 39.67
Some college 37.62 34.83 28.09
Bachelor or more 39.16 45.74 32.25
Census region
Northeast 9.98 14.64 17.68
Midwest 21.80 27.88 20.76
South 25.28 36.38 37.86
West 42.94 21.09 23.70

Notes. Entire UAS sample as of September 2019 (N = 7,787). Population benchmarks
from CPS-ASEC 2018.
¢ These match their population counterparts by construction.

by matching the distributions of interaction variables, such as gender X education. The preferred
set of raking factors may feature both single and interaction variables, such as, for instance,
race-ethnicity and gender X education. The use of two-way marginals corrects for discrepancies
between distributions referring to specific subgroups that would not be accounted for by using
one-way marginals alone. The customized set is limited to a maximum of 6 variables (single
variables, interaction variables or a combination of both). Restrictions on the number and type of
raking factors are imposed to ensure convergence of the algorithm and to reduce weight variability.
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Table 5: Unweighted and weighted distributions of selected variables that were not used in the
raking (%)

Variable Unweighted Weighted with ~ Population
final weights
Household size
1 member 15.91 15.14 14.74
2 members 41.39 40.48 34.78
3 or 4 members 31.54 32.08 35.70
5 or more members 11.16 12.29 14.78
Household income
<$30,000 25.80 27.71 22.49
$30,000-$59,999 25.67 25.94 26.89
$60,000-$99,999 23.44 22.64 23.77
>$100,000 25.08 23.71 26.85
Urbanicity
Urban 39.82 38.17 38.40
Rural or mixed 60.18 61.83 61.60
Work status
Working 61.85 62.11 59.59
Retired 19.79 18.64 18.71
Other 18.36 19.25 21.70
Employment type
Government 18.42 16.14 13.76
Private 68.03 71.23 76.19
Self-employed 13.55 12.63 10.05

Notes. Entire UAS sample as of September 2019 (N = 7,787). Population benchmarks
from CPS-ASEC 2018 and ACS 2017 for urban indicator only.
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Appendix

A Empirical background for our sampling algorithm

As stated in the main text, we developed our adaptive sampling algorithm as a result of our
experiences in the American Life Panel (ALP). In the ALP, we observed that selective nonresponse
and attrition had led to discrepancies between the distribution of certain characteristics in the
panel and the corresponding distribution in the population, for example, in the CPS. Specifically,
the ALP had an underrepresentation of low-income individuals. Therefore, a specific “vulnerabe
populations” sample was drawn that targeted low-income neighborhoods. However, this resulted
in an overrepresentation of individuals in urban areas. This led to the question of whether we
could find a more sophisticated way to draw additional samples, such that observed discrepancies
in certain variables could be reduced without introducing discrepancies in other variables.

When formalizing the problem theoretically, we decided to frame it as a comparison of
discrete distributions, which often is reasonable in practice and allows for more straightforward
computations, for example, computing the variance of the weights. Practically, we realized that we
needed to base the sampling on zip code characteristics, and thus a two-stage sampling procedure
in which zip codes were drawn first and addresses within the drawn zip codes second.

For comparing discrete distributions, the Pearson chi-square presented in section[2]is the natural
metric. The goal of reducing this chi-square by drawing additional samples then involves a number
of choices:

* How many zip codes will be drawn;

* How many addresses will be drawn per zip code; this could depend on characteristics of the
zip code, especially its population;

* A function mapping the characteristics of the zip code into the probability of drawing the
zip code.

As to the latter, we write this in two parts: (i) a function w(-) such that w; = w(Dy) is a measure
of the desirability of drawing zip code k, where Dy was defined in section 2} and (ii) a rescaling
of these into probabilities of sampling: px = wi/2; w;.

Using the existing ALP as the basis, we simulated various choices. The results presented here
were computed in the Spring of 2013, using the distribution of the ALP at that time and zip code
distributions from the most recent ACS data at the time. We presented this at the Panel Survey
Methods Workshop in Ann Arbor, MI in May 2014 (Angrisani, Kapteyn, Meijer, & Saw, 2014).

It turns out that Dy does not vary greatly across zip codes, and hence the same holds for the
probabilities if the mapping does not have much curvature. An example of a function we tried is

B 1
- 1+ cDy

Wk
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for some parameter ¢, which led to sampling probabilities that did not vary much across zip codes.
We then looked at transforming the Dy into quantiles Qi and choosing a transformation that
translates quantiles into probabilities, specifically first computing the “utility” function

1-
0.

1-a

Ui =

and then computing wy = b + Uy for some parameter b. The utility function Uy is the negative
of the well-known Constant Relative Risk Aversion (CRRA) utility function, with risk aversion
parameter a. From micro-economic studies, we know that this function allows for a wide range
of curvatures indexed by a. The minus sign maps higher quantiles (and thus higher discrepancies
Dy ) into lower utilities.

The parameter b is then a translation that makes all the desirabilities wy positive. Moreover,
we can choose this such that the ratio between the highest and lowest value, and thus the ratio
between the highest and lowest sampling probability, is some prespecified amount R.

In our simulations, we also looked at the following methods:

* Equal weights (wx = 1) and thus equal probabilities of sampling the zip codes.
* Probability proportional to size of the zip code, wi = Ng, the zip code population size.
* Pick the zip code with the smallest Dy.

The latter is guaranteed to reduce the discrepancy the fastest, but has the drawback that it does not
result in a probability sample, and to the extent that zip codes are different along dimensions that are
not included in the distributions that are compared, this may lead to drawing very nonrepresentative
samples. Hence, we included this more as a benchmark (lower bound) than as a realistic possibility.

Figure|l|shows the results from a limited simulation that we performed to get some insight into
whether the method is likely to work. It shows the evolution of three criteria as more samples are
drawn:

* The ratio of the largest to the smallest weight (based on cell-based poststratification weights);
* The design effect (loss of effective sample size compared to simple random sampling);

* The Pearson chi-square D (to measure the difference between sample and population
distribution).

The graphs on the left assume n = 10 addresses will be drawn per zip code, the ones on the right
assume n = 50. From these results, we concluded that the algorithm with @ = 1.5 and R = 100
is likely to perform well. As discussed in the main text, when implementing this, we started with
n = 40, using n = 10 and without replacement sampling in LA County, and later switched to
proportional-to-size samples per zip code for the nationally representative and California batches.
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B Effective sample size metric for the Native American batches

For the nationally or regionally representative batches starting with batch 5, we have used an
adaptive sampling method with the Pearson chi-square metric as the measure of fit, as discussed
in the main text. For the Native American batches, which were sampled without taking the earlier
nationally representative batch into account, we used an effective sample size metric instead. This
appendix describes this metric. It is a slightly edited version of a note written in January 2014.

B.1 Deriving an ESS metric

A drawback of the Pearson chi-square metric (I]) is that it is undefined if g; = O for some j. In
many cases, this will not be a problem, because g typically is a known population distribution
and values that do not occur in the population will not occur in the sample either, and these cells
will simply be excluded. However, if the aim is to sample from a subpopulation that can not be
identified a priori, the sample may contain individuals that are not in the subpopulation of interest
and thus the desired fraction of individuals with this value is zero.

Our motivation is our intention to draw a sample of American Indians or Alaska Natives
(AIANs)J% Less than 2% of the U.S. population consists of AIANS, so if we draw a simple random
sample from the U.S. population, we obtain a sample with 98% of the individuals having an
undesired characteristic. However, we are able to select zip codes from which to draw individuals
and we know the racial distribution in these zip codes from the American Community Survey
(ACS) 2007-2011 5-year file. Thus, we can give zip codes with higher fractions of AIANs a
higher probability of being in the sample, thereby increasing the hit rate. We would also like to
obtain a sample that is well-balanced in terms of region (Census division), urbanicity (urban, rural,
mixed), and whether the zip code is part of an American Indian area (Al area) or not. The latter are
mostly reservations. We stratify by the Al area indicator, but complete stratification by the other
characteristics is not practical, because the number of strata (9 X 3 X 2 = 54, including Al area but
excluding individual AIAN status) would become too large compared to the intended sample size
(300).

Thus, in each of the two strata, we have 54 cells (including individual AIAN status), but the
target distribution has zeros in half of these cells (non-AIAN race). We could modify the Pearson
metric (I)), for example, by replacing g; = 0 by g; = 1. However, this still makes the Pearson
statistic a function of the square of the fraction in the non-AIAN cells, which is unattractive.
Non-AIANs will be dropped from the sample, so it seems most realistic to assume that each
non-AIAN contributes a certain fixed cost ¢y without having any benefit, and thus the metric
should be a function of the total (sum) of the number of non-AIANSs, and not of a sum of squares
over irrelevant cells. Moreover, a discrepancy in the distribution among AIANSs has very different
consequences than a discrepancy in the distribution among non-AIANs, which is not reflected in

5 At the time of drawing the zip codes for the Native American batches, we defined Native American as AIAN. Later,
we adopted a broader definition that also includes Native Hawaiian and other Pacific Islanders.
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the Pearson metric.

Therefore, here we develop a different metric, which is more suitable for sampling the NA
batches, but can be used more generally as well. The metric is based on the concept of the effective
sample size (ESS). First, suppose we have drawn a simple random sample of size n from a population
of interest and we are interested in the mean u of a variable x. The estimator is the sample mean
%. If x is independently and identically distributed (i.i.d.) with variance o2, the variance of the
sample mean is Vsgs = o>/n. Now suppose that we are in a different situation where, for example
because of sampling with unequal probability or clustering, The variance of X is V. Then the
effective sample size nef is the sample size that would be required to obtain the variance V from a
simple random sample, that is, it is such that V = o2 /nesr. Hence, neg = o2 /V. For defining our
desirability metric, we proceed by assuming x is still i.i.d. but the sample is drawn with unequal
probabilities, resulting in the distribution of y (the demographics and other characteristics of the
zip codes) being potentially different from the population distribution. To correct this, sampling
weights, denoted by w; for the i-th observation, are constructed. The (weighted) sample mean is

T _ s
= Wi X,
}’L
Z =1 Wi i=1

where w; = w; /W and W = Z _; Wi is the sum of the weights. Hence, the variance of X is
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It follows that the ESS is
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For these computations, we assume that the weights are constant within each of the 54 cells of
region X urbanicity X Al area, which form the categories j of the distributions f;, g;, and hy;.
Thus, w; = g;/f;, where as before g; is the population fraction in category j of y and f; is the

corresponding sample fraction, and the weight w; is applied to each observation in category j.
There are n; = n - f; such observations. Note that

J
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(where J = 54 in our case). Consequently, the ESS is
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As in the setup in the section [2, suppose we have an existing dataset with effective sample size
nefr,0 and we are considering which zip code to sample. If zip code k is sampled, n1; additional
observations are included, resulting in a new ESS of neq 1x. We can then define the benefits of
drawing this sample as the increase in ESS:

bi = Nef, 1k — Refr,0- 3)

The costs of this amount to ¢, which typically would be a linear function of nx, but the cost
function in our case is slightly more complex (see below). A natural metric for the desirability of
zip code k is then the benefit-cost ratio Dy = by /ck, that is, increase in effective sample size per
dollar.

B.1.1 Dealing with zeros

As argued above, one of the main drawbacks of the Pearson criterion, and the primary reason
for developing the ESS criterion, was that it could not deal with zeros in the target distribution
g. Unfortunately, the ESS criterion suffers from an analogous problem: the ESS becomes
undefined (or, more precisely, zero) if there is a cell j with f; = 0. If the corresponding target
is also zero (g; = 0), we can replace gjz. / fj by zero, but if this is not the case, this does not give
a good impression of the desirability of the sample. If region is one of the characteristics in y,
this means that the criterion is uninformative until all regions are filled by at least one zip code.
This is an inconvenient problem, especially if the number of “regions” is large (as it is in our
case, being defined as Census division X urbanicity, 27 cells within both strata) and the sample
size small, in particular the number of zip codes. One solution would be to use raking weights
in such situations, which does not require that all cells be filled, although still all marginals must
be nonzero. While we do use raking in the computation of our poststratification weights, this is
computationally impractical as part of the sampling algorithm. A practical, though admittedly
ad-hoc, approach is to prefill all cells with positive numbers, for example, one respondent in each
cell, or a probability mass of g; in cell j with an initial sample size of np = 1. Once the cells
are filled with actual respondents, this is only a slight distortion that does not materially affect
the selection of new zip codes. However, in the initial stages, the selection of zip codes may be
sensitive to exactly how the cells are prefilled. We implemented the following algorithm (within
both the Al area and non-Al area strata separately):

1. Setng =1and f; = g; forall j.
2. Draw 10 zip codes at random (and update f here and in the following).

3. Draw 10 zip codes using the adaptive algorithm with the ESS criterion, only taking the
urbanicity distribution into account (J = 3).

4. Draw 10 zip codes using the adaptive algorithm with the ESS criterion, only taking the
region distribution into account (J = 9).

23



5. Draw the remaining zip codes using the adaptive algorithm with the ESS criterion, taking
the joint distribution of region and urbanicity into account (J = 27).

Note that a similar ad-hoc adaptation to the Pearson criterion would remain sensitive to the specific
choice even in later stages of the sampling, because the denominators g; are the fractions from the
target distribution, which stay the same throughout the whole process, whereas in this algorithm,
the culprit f; is updated in each step, and the sensitivity to the initialization quickly disappears.

B.2 Cost function

In the Native American batches, the cost function consists of a number of components: (a) some
fixed costs ¢y that do not depend on the sampling and thus can be ignored; (b) a cost ¢; per person
who is invited to participate in the initial short screening survey (e.g., postage; small monetary
gift); (c) a cost cp p per person who returns the paper survey (e.g., data entry; payment for answering
the survey); (d) a cost ¢y per person who answers the initial survey online (e.g., data cleaning, but
this can be close to zero; payment for answering the survey); (e) a cost ¢3 per person who is eligible
for entering the panel (cost of trying to get in contact); (f) a cost c4; per person who enters the panel
and already has internet access (e.g., setup of accounts, personal details, generating de-identified
user IDs); (g) a cost ¢4 per person who enters the panel and does not have internet access already
(ditto, plus cost of a tablet and broadband subscription). More costs, such as maintaining a support
line, are involved, but this gives a good impression. Suppose my, individuals are initially invited
from zip code k. From external information (ACS), we know that a fraction e of these will be
eligible (AIANs). A fraction rp of initial invitees returns the paper questionnaire and a fraction
r; answers the questionnare online; a fraction g; of the eligible individuals enters and has internet
and a fraction gy enters and does not have internet. In the absence of any prior information, we
assume that these fractions except e; do not vary across zip codes or across demographics y. Then
the costs are

ck =my {ci +rpcap +rpcay + (rp +rp)ecs + (rp + ry)ex(qrcar + gnean)}
= mi(A + Bey), 4

where the constants A = ¢| + rpcyp + rycay and B = (rp + ry)(c3 + grcar + gy can) do not depend
on k. It is likely that g; would be higher for those who entered the initial survey online and lower
for those who returned it on paper, which would change the meaning of A and B but not the form
of the expression. In our case, we expect differences between Al areas and non-Al areas. Based
on informed guesses, we used A = $23.492, B = $38.52 for non-Al areas, and B = $133.56 for
Al areas.

C Sampling implementation details by batch

In the following, “NR” means batches that are intended to be nationally representative, “NA”
means Native American batches, “LAC” means Los Angeles County batches, and “CA” means
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California batches. “ACS” is the American Community Survey of the United States Census Bureau
(https://www.census.gov/programs-surveys/acs/).

C.1 Batch 1 (ASDE NR)

The first batch consisted of a random sample of about 10,000 individuals from the database of the
commercial vendor ASDE. ASDE claimed that they had about 95% of the U.S. population over 18
in their database, so we consider this a simple random sample from the U.S. population over 18.

C.2 Batches 2 and 3 (NA1 & NA2)

These two batches aimed at establishing a Native American panel. This was also obtained from
ASDE, but using a different method. For each of these batches, we submitted 421 zip codes to
ASDE, who then subsetted their database to only those zip codes and then drew a random sample
of size 10,000 from the resulting database, of which we used a random 5,000. We drew the zip
codes from the 2007-2011 5-year file from the ACS, excluding zip codes with less than 5% Native
Americans and zip codes with fewer than 100 residents. The 421 zip codes were drawn from
two strata: 50 were drawn from AIAN areas (which are mostly reservations) and the remaining
371 from non-AIAN areas. These two samples were drawn independently of each other. The
population of zip codes we drew from contained 544 zip codes from AIAN areas and 1052 zip
codes from non-AIAN areas. Hence, 100/544 = 18% of the AIAN area zip codes satisfying the
restrictions were drawn, and 2 X 371/1052 = 71% of the non-ATAN area zip codes satisfying the
restrictions were drawn.

A consequence of this way of sampling individuals is that (in expectation) the number of
individuals drawn from a zip code is proportional to the population of the zip code. Hence, the
effect of drawing zip code k is drawing nx o Ny individuals from zip code k instead of drawing a
fixed number n; as for batches 5-12.

We used an effective sample size (ESS) based criterion to define desirability of a zip code. See
Appendix [B|for a discussion and derivation. Because ESS increases with sample size, and sample
size was proportional to zip code population size, if this would be directly used as the criterion, we
would primarily draw large zip codes (more precisely, given that only Native Americans would be
eligible, zip codes with large absolute populations of Native Americans). But because both total
sample size and the number of zip codes was determined beforehand, this would not be a useful
criterion by itself. Therefore, we used the ratio of the increase in ESS due to adding zip code k to
an estimate of the cost of adding zip code k as our desirability criterion. That is, we used

b, = ESSUi.0) ~ESS(f.0) )

Ck

where f was the predicted distribution before adding zip code k and f; the predicted distribution
after adding zip code k. The cost function we used was

¢k = Ni(A + Bey) (6)
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where A = 23.492, B = 38.52 for non-AIAN areas, B = 133.56 for AIAN areas, Ny is the total
population age 18 and over in the zip code, and e is the fraction Native Americans in the zip code.

The characteristics we used for defining the distributions f, g, and h; were Census Division
(9 categories) and urbanicity (3 categories: urban, rural, mixed) of the zip code. These were
completely cross-classified, resulting in a one-dimensional distribution with J = 27 categories.
Because these characteristics are defined at the zip code level, for any given zip code, hy; = 1 for
exactly one j and hy; = O for all other j.

The ESS criterion is undefined for f; = 0. Therefore, we used an initialization in which we
started with one hypothetical respondent and f; = g;, then drew a small number zip codes, adding
more information in steps, until the full distribution was used. See Appendix [B]for details.

The algorithm was a variant of the algorithm described in the main text, with Dy as in (5)). This
was then transformed into sampling probabilities of the zip codes along the lines of section |2.4

1. Compute the quantile QO of Di. That is, the zip code with the smallest value of Dy gets
Or = 1/K, the next gets Qr = 2/K, and so forth, and the zip code with highest D; gets

Or = 1.

2. Because higher values of Dy are more desirable, as opposed to section [2.4] compute
the transformed quantiles gx = K + 1 — Qr. Note that the intention was to compute
gr = 1/K+1-0,ie., g = 1/K,...,K/K with 1/K being most desirable. Because of
this error, we actually used gx = K,K + 1/K,...,K+ 1 —1/K with K being most desirable.
We discuss the consequence of this below.

3. Compute the utility function

a ¢

l1-a

U = -
where a = 1.5 is the tuning parameter.

4. Compute wy = b + Uy, where b = (Upnax — RUnin)/(R — 1) was chosen such that the ratio
between the highest and lowest value of wy is equal to R = 100.

5. Compute pr = wi/ Zf:l we. The probability of drawing zip code k is py.
6. Draw a zip code according to the probabilities py.

7. Update the distribution f and panel size n.

8. Drop the drawn zip code from the population to draw from and repeat.

The consequence of the error with computing the quantiles g is that the utility function had less
curvature than intended. As illustrated in Figure [2] this implied that the most desirable zip codes
were drawn with much less probability than intended, whereas zip codes with average desirability
had higher probabilities. Overall, the sampling is closer to a simple random sampling than intended.
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Figure 2: Intended and actual probabilities of drawing zip codes for various batches
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Furthermore, due to a miscommunication, the definition of “Native American” used in the
sampling was narrower than intended. In the drawing of zip codes, the definition used was
“American Indian or Alaska Native” (AIAN; alone or in combination), whereas for the purpose
of defining eligibility of this subpanel, Native Hawaiians and Pacific Islanders (NHPI; alone or in
combination) are also included. All respondents to the initial survey who were AIAN or NHPI
were eligible to enter the panel and respondents who were not AIAN or NHPI were ineligible.
Another mishap allowed some individuals of other races to enter the panel. These were retained,
but get a weight of zero. Household members of Native Americans are also eligible for the panel,
as usual, even if they are not Native Americans themselves.

At the time of drawing the zip codes for batch 3, the number of panel members in batch 2 was
very low, and therefore we made no attempts to take the results from drawing batch 2 into account.
Hence, we simply reran essentially the same program, except that we excluded the zip codes from
batch 2 and generated a new random seed.

C.3 Batch 4 (LAC1)

This batch aimed at sampling families with young children in LA County. This was drawn as a
simple random sample of about 2000 individuals from a list of names and addresses provided by
the State of California of individuals having given birth in LA County in 2009-2012 within a set of
zip codes around restaurants participating in a healthy menu options project. However, we allowed
anyone at the address (specifically, new occupants) to answer the survey and enroll in the panel.
Because of the highly specific nature of the subsample, we do not provide weights for members
recruited within this batch.

C.4 Batch 5 (MSG1 NR)

This batch was the first one in which we used the adaptive sampling algorithm as described in
section [2] comparing the then-current distribution in the UAS with external targets, and the first
one for which we used MSG as our provider. We used the March 2015 CPS base data to estimate
the target distribution g and the 2009-2013 5-year ACS file at the zip code tabulation area (zcta)
level to estimate the distributions of the zip codes Ay. For the distribution f in the UAS, we used
only panel members from the nationally representative batch 1. The characteristics we used for
comparing distributions were sex X age X race/ethnicity, sex X age X marital status, and sex X age X
education (see section 2] for the categories used). For the anticipated response rates (appendix [DJ),
we only used data from batch 1, with the distribution of the invites (y,,;) equal to the national
distribution (g,,;) and overall response rate of p = 0.20. The latter was an informed guess rather
than an empirical estimate. The algorithm used for drawing this batch had the same bug as for the
Native American batches, so that the probabilities of sampling the most desirable zip codes were
much lower than intended, as illustrated in the bottom-left graph of Figure 2]

We excluded zip codes with fewer than 100 residents age 18+. We drew 50 zip codes and 40
addresses per zip code, for a total sample of 2000 addresses.
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C.5 Batches 6-12 (MSG2-MSGS8 NR)

Batches 6-12 were drawn in the same way as batch 5, with some small differences. In all
these batches, zip codes drawn in previous batches (including the Native American batches) were
excluded from consideration, so that we drew zip codes without replacement within and across
batches.

In batch 6, we used an updated (estimated) overall response rate from batch 1 of p =
1913/10,000 as the anticipated total response rate; 100 zip codes were drawn for a total sample of
4000 addresses. The actual number of invites was lower (about 3700) because the drawn zip codes
(from the ACS) included addresses in Puerto Rico and other zip codes such as college campuses
for which the Delivery Sequence File did not contain any residential addresses.

In batch 7, an anticipated overall response rate of 2149/12,000 was used, based on the number
of panel members and invitees from batches 1 and 5; 63 zip codes were drawn for a total sample of
slightly over 2500 addresses, although again the actual number of invites was a little lower because
of a drawn zip code in Puerto Rico.

From batch 8 onward, we used the estimated distribution of the invites from previous nationally
representative batches to estimate the y,,;. This was based on the distributions (from the ACS) of
the zip codes that were actually drawn in previous batches, in addition to the national distribution
for batch 1. We also used the cumulative number of invites and the (then-)current panel size to
estimate the overall response rate. Batch 8 again sampled 100 zip codes for a sample of 4000
addresses.

Batch 9 was drawn in the same way as batch 8, except that 110 zip codes were drawn instead
of 100. Because in previous batches we had had some problems with zip codes that did not have
any addresses in MSG’s files, the 10 additional zip codes were to be used as backups in case some
of the first 100 could not be used. Thus, the target number of addresses was still 4000. Batches
10-12 were drawn in the same way as batch 9.

C.6 Batch 13 (LAC2)

This batch was drawn in Los Angeles County using the adaptive algorithm as in batches 5-12,
but with several differences. Because the number of zip codes (more precisely: ZCTAs) from
LA County in the ACS file is not very large (roughly 300), we decided to draw zip codes with
replacement, and to draw fewer addresses (10) per zip code per iteration. However, zip codes
drawn in previous batches were still excluded.

The algorithm used for drawing this batch still had the same bug as for the previous batches,
so that the probabilities of sampling the most desirable zip codes were much lower than intended,
as illustrated in the bottom-right graph of Figure[2] From this batch onward, we added the (joint)
distribution of zip code population size (quintiles derived from the ACS) and urbanicity (rural,
mixed, urban; based on Census Bureau data) to the target distribution g, panel distribution f,
and zip code distributions /. This was done because we had noticed an overrepresentation of
small and rural zip codes in previous batches. Related to this, from this batch onward, the target
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distribution g was obtained as an aggregate over zip codes from the ACS file (restricted to LA
County for this batch).

The target number of addresses was 2000, so 2000/10 = 200 iterations of the algorithm were
performed; 135 zip codes were drawn, with several of them multiple times (in different iterations),
resulting in 10-50 addresses per zip code.

C.7 Batches 14, 18, 19 (LAC3-LACS)

These batches were also drawn in LA County. The algorithm used was similar to the algorithm for
batch 13, but we made a few changes.

First, we discovered and corrected the bug that had given us zip code sampling probabilities
that were less curved with desirability than intended (Figure[2). Second, zip codes that had been
drawn before (including in non-LA County specific batches) were not excluded, so that sampling
was with replacement both within and across batches. Third, whereas previous batches sampled
from zip codes with at least 100 residents according to the ACS, we now sampled from zip codes
with at least 100 households. This excludes college campuses and institutions for which MSG
had no addresses anyway. Fourth, the ACS version used for this was updated to the 2011-2015
(2013-2017 for batches 18 and 19) 5-year ACS file at the zip code tabulation area (zcta) level.
Fifth, the algorithm was adapted again to include a “proportional to size” factor that increases
the probability that large zip codes will be drawn. That is, the probability of drawing zip code
k was pr = Nywy/ Zle Newe, where Ny is the zip code population size (residents age 18+ in
batch 14; households in batches 18 and 19). Combined with the sampling with replacement, this
has a tendency to also increase sample size within large zip codes relative to small ones.

In batch 14, the target number of respondents was 1000, so 1000/10 = 100 iterations were
done. In batches 18 and 19, the target number of respondents was 5000, so 5000/10 = 500
iterations were done in each of these.

C.8 Batches 15 & 16 (CA1, CA2)

These batches were drawn in California. The algorithm used was basically the one used for the
nationally representative batches (5-12), so sampling was without replacement. However, the
sampling included the corrections to the algorithm introduced in the LA County batches. The
target distribution and zip code distributions were again obtained from the 2011-2015 5-year ACS
file, and sampling was restricted to zip codes with at least 100 households. Instead of drawing zip
codes with a proportional-to-size factor, the number of addresses drawn was proportional to size[f]
with a target average of 40. That is, in the algorithm, the addition of zip code k was assumed to
lead to an addition of 7 = 40(Ni/N), where Ny is the number of households in the zip code and
N is the average number of households in all eligible zip codes (i.e., zip codes in California with
at least 100 households). The target number of addresses was 5000 (10,000 for batch 16), and the

6This was done after discussions with Jon Krosnick about this issue.
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algorithm continued until this amount was reached. Because 7 is typically noninteger, the final
number of addresses per zip code was a rounded version of this: rounded up to the nearest integer
with probability 7ix — | 7 | and rounded down to the nearest integer with probability 1 — (ix — | 7ig|).
For example, if 7y = 13.7, the number of addresses is 14 with 70% chance and 13 with 30%
chance.

C.9 Batch 17 (MSGY9 NR)

This batch used the same algorithm as batches 15 and 16, applied to the U.S. as a whole instead of
just California. Zip code distributions were obtained from the 2012-2016 5-year ACS file, and in
addition to the earlier innovations, this excluded the Puerto Rico zip codes, preventing the issues
we encountered in batches 5-12. The target number of households was 5000, with the number
of addresses per zip code proportional to the number of households and a target average of 40
addresses per zip.

D Anticipated response rates

As described in section[2] the adaptive sampling algorithm takes anticipated response rates r,,; into
account in determining the desirability of each zip code. Let the distribution of sampled individuals
be given by the proportions v,,;, and the total number of sampled addresses be N. Then, in the
absence of nonresponse, the expected number of individuals with category j of characteristic m is
N7ymj. If the total size of the panel is n, the number of individuals with category j of characteristic
m in the panel is nf,;, and hence an estimate of r,,,; is 7,,j = 1 finj /(NYimj).

However, given the large number of categories and the relatively small sample sizes, especially
for the earlier batches, these estimates may be very low, or even zero, with sparse cells. Moreover,
regardless of whether they are low, these estimates may be imprecise. We do not want to rely too
strongly on such imprecise or extreme estimates, and therefore we trim the estimates. Specifically,
let the overall response rate be p = n/N and compute the initial estimates r1,,j = p fij/¥m;. Define
the bounds Q7 = 1/3 and Oy = 3. Then we winsorize the estimates according to

P01 if finj/ymj < OL;s
Pomj = \rmj QL < fmj/Ymj < Ons

eQu it finj/Ymj > OH.

After this winsorizing, the overall estimated response rate may not be p anymore, so we rescale
them such that the overall response rate is correct again. However, simple rescaling may lead to
some response rates being greater than 1. Therefore we compress them using the estimate

3mj =a+ﬁr2mj
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such that
M Jn

Z Z 3mjYmj = P>

m=1 j=1
so 8 =(p— a)/S, where
M Jn

S = Z Zerjymj-

m=1 j=1

If @ = 0 gives all estimates r3,,; < 1, we choose @ = 0 and 8 = p/S. Otherwise, we impose the
restriction that max,, ;j 73,,; = 1, S0 @ + Brmax = 1, where ryax = max,, j r2,,;. This leads to the
solution @ = (prmax — )/ (rmax — ) and B = (1 — p)/(rmax — S)-

The proportions 7,,; are estimated as follows. Let K, be the set of zip codes sampled in batch
b, and let Ny be the number of addresses sampled in zip code k € K, in batch b. Furthermore,
let hymj(p) be the fraction in zip code k that has category j of characteristic m, as derived from the
ACS file at the time batch b was sampled. Because the ACS file is updated annually, this varies
with 5. When sampling batch b’, we estimate ,,; using data from batches in the set 8. This is
a subset of {1,...,b" — 1}: some very recent batches may be excluded because the recruitment
has not progressed enough to estimate response rates, and some batches from different sampling
frames may be excluded. (The corresponding panel members in the UAS are also excluded from
nand f,;, and the total number of sampled addresses is also evaluated for this subset.) Now,

Ybes 2kek, Neohkmjp) 1
Ymj = =

= — Nieo hiemjv)s
Lbes Zkek, Nkb Npy ];gk;(b ™

where N; is the total number of sampled addresses in the batches from the set 8. Batch 1 was a
simple random sample from the population, and thus we treat this batch as a sample from a single
“zip code” with distribution iy, j(1) = gmj(1) that is, the distribution for the U.S. as a whole.

E Estimating frame-specific probabilities

In this appendix, we describe how we estimate the frame-specific probability s of household h
in zip code k being invited to participate in the UAS, as part of computing the base weights.

E.1 Frame 1: Nationally representative list (s = 1; batch 1)

Batch 1 was a simple random sample from the database of the vendor ASDE, who stated that they
included over 95% of the U.S. population. Hence, we treat this as a simple random sample from
the U.S. population (of 18 and over). As mentioned above, for this frame, we consider the whole
U.S. as a single zip code, with mxs= = 1 and 7wy s=1 = n/N, where n = 10,000 is the number
of households invited and N = 117,715,016 is the number of households in the U.S. population.
Hence, Thi|s=1 = Thlk,s=1Tk|s=1 = 10,000/117,715,016 = 0.00008495.
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E.2 Frame 2: Native American zips (s = 2; batches 2 & 3)

As discussed above, the Native American batches were drawn in two stages, with stage 1 being a
stratified sample of zip codes and stage 2 being (approximately) a simple random sample from all
the households in the set of zip codes drawn in stage 1.

Let di be a dummy variable indicating whether zip code k was drawn in the sample, and let
D = {di,...,dkx} indicate the drawn sample, where K is the total number of zip codes from
which the sample is drawn (K = 1596 for the Native American batches). Then the probability that
household 4 in zip code k is invited conditional on the set of zip codes indicated by the set D, is

din

TThi|D,s=2 = Np’ @)
where
K
Np = Z d; Ny
=1

is the total number of households in the sampled zip codes, N, is the number of households in the
population of zip code ¢, and #n is the number of invited households (5,000 for batch 2 and 10,000
for batches 2 and 3 jointly).

Thus, the probability that household £ in zip code k is invited is

o

Thk|s=2 = Efpr|p,s=2 = Z D, Thk|D=D,.5=2 » (8)
q=1
where D, is a particular feasible sample of zip codes, g = 1,...,Q, and Q is the number of feasible

samples of zip codes. For batches 2 and 3 jointly,

544! 1052!

=6.3x 1038,
100! 444! 7421310!

Q:

This number is larger than the largest double precision number that Stata can represent and
thus—even aside from the difficulty of estimating the probabilities 7o —it is computationally
infeasible to compute the sum (8]). However, it can be accurately estimated in a much simpler way.

Because
1 1 &
my=—Np=— ) di/N,=N
Kop Ky ;

is a sample mean, with Ko = Zf: | d¢ the (nonrandom) number of sampled zip codes, my is a
consistent estimator of the population mean uy = E(Np). Therefore, (7)) has the same asymptotic
distribution as din/(Kpun) and mpxs=2 = E(di)n/(Kppn) = ngjs=2n/(Kppun). The estimate
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of Kpup is of course Kpmpy = Nz) where we use the 2012-2016 5-year average ACS file to
obtain the most accurate estimates of N, for the sampling period (2014), and n is a known quantity
(5,000 or 10,000). Consequently, the problem is reduced to estimating the probability 7y |- that
zip code k is drawn.

In drawing the zip codes, we used a variant of our adaptive algorithm, which used a combination
of Census division, urbanicity, zip code population size, and fraction AIANs in the population
to determine sampling probabilities, the latter two computed from the 2007-2011 5-year average
ACS file. Zip codes were drawn inependently in two strata: American Indian areas and other zip
codes. Hence, we estimate my|4-> by estimating a logit model for being sampled, separately in
these two strata, using dummies for Census division and urbanicity, plus the logarithms of zip code
population size and fraction AIANS.

E.3 Frame 3: Los Angeles County young mothers (s = 3; batch 4)

As mentioned above, we are unable to compute sampling probabilities for this frame, and thus
exclude this batch from the weighting.

E.4 Frame 4: Nationally representative 2-stage, fixed (s = 4; batches 5-12)

Batches 5-12 used our adaptive algorithm to draw zip codes in the first stage, and sampled a fixed
number (40) of addresses per zip code in the second stage. Consequently, the probability of a
household being invited in this frame is 7k |s=4 = 7Tk, s=47k|s=4 With 7k s=4 = ni /Ny = 40/ N,
ni = 40 being the number of households being invited per zip code and Ny being the number of
addresses (households) in the population in zip code k.

An overview of the adaptive algorithm for drawing zip codes in this frame is given in section[2]
For each new zip code drawn in a batch, an estimate of the distribution of certain individual
characteristics in the UAS up to the previous drawn zip code is compared to the corresponding
distribution in the ACS. Zip codes that, when drawn, would move the UAS distribution more in
the direction of the ACS distribution have a higher probability of being drawn. The characteristics
used are demographics (sex, age, race/ethnicity, marital status, education, and interactions thereof).
In later batches, additional zip code level characteristics were added: population size, urbanicity,
and region (Los Angeles County, other California, non-California). For a while, a programming
error caused less desirable zip codes to be drawn with a higher probability than more desirable
zip codes. Furthermore, not all zip codes were included in the database of our vendor for these
batches (MSG). Specifically, zip codes from Puerto Rico are not in their database and zip codes
for institutions like college campuses, prisons, and hospitals are not in their database. Realizing
this, we excluded Puerto Rico in later batches, but we were unable to pre-exclude the other zip

7Note that we use this same estimate for households from all feasible zip codes, whether or not they were actually
drawn in the sample, because pp does not depend on the actual sample.
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codes. Therefore, we often drew a few backup zip codes as well, to be used as replacements of the
rejected zip codes.

For constructing the base weights, we treat all these variations as random and estimate 7y |54
as a combined probability from all these batches, where we code both the rejected zip codes (except
Puerto Rico, which we exclude from all computations) and the backup zip codes as being drawn. We
estimate the probability using a logit model, with demographic distributions as regressors (fraction
male, fractions of racial/ethnic categories, fractions in age categories, fraction not married, fraction
in education categories), in addition to dummies for Census Region (augmented with Los Angeles
County and other California), population quintile, and urbanicity.

E.5 Frame 5: Los Angeles County 2-stage (s = 5; batches 13, 14, 18, & 19)

Batches 13 and 14 used a modified version of the adaptive sampling algorithm. Rather than
drawing zip codes without replacement, these drew zip codes with replacement, but with a smaller
number of addresses per zip code draw, 10 instead of 40. (The addresses were still drawn without
replacement.) Batch 13 excluded zip codes drawn before as part of the nationally representative
batches, but batch 14 did not do this. Batch 14 also modified selection probabilities proportional
to population size, so that larger zip codes had a proportionally higher probability of being drawn.
We ignore these differences for computing the weights and include all LA County zip codes in the
population from which zip codes were drawn.
The sampling method for batches 13 and 14 can then be described as follows:

1. Set b = batch number, renumbered such that b = 1,...,B (B = 2) for the batches of interest.

2. Choose the target number n;, of households to sample and compute the number of iterations
Ky = ny/10.

3. Initeration ¢, compute the probabilities pgp, that zip code k is drawn as a function of the UAS
panel composition (in LA County) immediately before drawing batch b and the projected
UAS sample composition after iteration ¢ — 1.

4. Using the probabilities pxp, draw one zip code and define the indicator variable dip, = 1 if
zip code k was drawn in iteration ¢ of batch b and dgp, = 0 otherwise.

5. Do steps |3| and @] K times. We drew zip codes with replacement, so every zip code was
eligible in every iteration, regardless of whether it had been drawn in a previous iteration.

6. After completing the K}, iterations, compute dyp, = Zibl dyps, the number of times zip code
k was drawn in batch b and ng, = 10dgp, the target number of households to be drawn from
zip code k in batch b.

7. Send the list of drawn zip codes and their target numbers of households, i.e., the pairs (k, ngp ),
to our vendor MSG. MSG then drew ny;, addresses (without replacement) at random from
zip code k in the USPS Delivery Sequence File.
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In order to estimate the probability 74 |s=5 that household 4 in zip code k (from LA County) is
invited, we make a few simplifying assumptions.

* The zip code sampling probability pp,; does not depend on b and ¢. Hence, we can write it
as M |s=5-

* The population of each zip code k does not change over the period of interest. The population
size (number of households/addresses) of zip code k is N.

These are not strictly true, but they hopefully have little effect on the weights and it is hard to
imagine making useful progress without them.

Probability of inviting a household

It now follows that the probability that household % from zip code k is drawn, conditional on zip
code k being drawn and conditional on the values of ngp, is

Thik, {ngp} = Nk Nks

where ng = Zle nip. Note that it is implicitly assumed that n; < N;. We can extend this to the
case of the zip code k not being drawn (n; = 0), in which case 7,k (n,, ) = 0.

Letd; = Zf: | dip be the total number of times zip code k has been drawn and let M = Zf: 1 Kb
be the total number of draws at the zip code level. Then under the simplifying assumptions stated,
dy follows a binomial distribution with parameters M and 7y |4=s:

. M\ ; _i .
Pr(d; = j) = (j)ﬂi|s:5(1 —7rk|S:5)M 7, j=0,...,M.

Combining the two components and noting that n;y = 10dy, we obtain the marginal probability that
household 4 in zip code k is drawn as

M .

M\ _: 105

Thi|s=5 = Z (] ) 7r£|5:5(1 - 7Tk|s=5)M I Ne
Jj=0

M
10 M! i o

- z : 1- - J
Ni = G- —j)!ﬂk|s=5( Tic|s=5)

10Mmses M50 (v = 1)

- Nkkls 5 ;; 7! ((M— 1 )—8)!”’€ls=5(1 = mgs=s)
10M 7y |5=5

TN
104y

= _Nk N

where uy = My 55 is the expected number of times zip code k is drawn.
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Estimating

Let xx be a vector of characteristics of zip code k. We include demographic composition (sex,
age, race/ethnicity, marital status, education), urbanicity, and population quintile in this. We then
estimate 7y |55 as a logit probability

exp(x; )
1 +exp(x; 8)

The parameters S8 can be estimated by writing out the loglikelihood and estimating the model by
maximum likelihood. In Stata, we do this using the glm command, with a command structure like

T |s=5 =

glm depvar varlist , family(binomial M) link(logit)

where depvar is the name of the variable containing dy, varlist is the list of variables in xx, and M
is the total number of draws introduced above. After this, predict computes the estimate of .

E.6 Frame 6: California (s = 6; batches 15 & 16)

The California batches were drawn with a two-stage method that is similar to the algorithm for
drawing the nationally representative two-stage batches (frame 4). In particular, sampling of zip
codes was without replacement. Only zip codes from California were included. Zip codes from
Los Angeles County were allowed to be drawn, but an indicator for LA County was added to the set
of distributional characteristics, so LA County zip codes had a lower probability of being drawn,
because the UAS already overrepresented those on account of the LA County batches.

In the second stage, the number of households invited per zip code was proportional to
population size (number of individuals age 18+), with an a priori average of 40 households per
zip code if every zip code had the same probability of being selected[¥] This was then slightly
scaled to make the total number of invites equal to the target if the last drawn zip had pushed
it over the target, and then non-integer numbers of invites were probabilistically rounded up or
down to obtain an integer number with the same expectation. These are, however, fairly minor and
inconsequential details, so for computing the probability that a household was drawn, we assume
that the number of invites (if drawn) for zip code k is a given real number ny = 40(I/u;), where
I is the number of individuals in the population in zip code k and y; is the unweighted mean of I
across all zip codes in California as computed from the 2012-2016 5-year average ACS file. Then
the probability that household 4 from zip code k is drawn, conditional on zip code k being drawn,
is 7|k s=6 = Nk / Nk, where N is the number of households in zip code k.

Consequently, the probability of a household being invited in this frame is 7mpxs=6 =
Thk,s=6Tk|s=6 With mpk =6 = nx/Nr. We estimate the probability my|s—¢ that zip code k is
drawn in the same way as with frame 4, i.e., with a logit model with the same regressors, though
restricted to California zip codes (7x|s=¢ = O for zip codes outside California).

81t turns out that larger zip codes initially had a higher probability of being drawn, so that the average number of
invites per zip was about 70 in batch 15. It was about 45 in batch 16.
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E.7 Frame 7: Nationally representative 2-stage, proportional to size (s = 7; batch
17)

This frame used the same algorithm as the California frame (frame 6), except that this included zip
codes nationwide instead of just California, and that the number of invites was based on the number
of households in the zip code instead of the number of individuals, that is, nx = 40(Ng /un ), where
up is the mean number of households per zip code. With these adjustments, the probability of a
household being invited in this frame is 7y |5=7 = 7p |k, s=77k |s=7 With 7k s=7 = ng /N = 40/ un.
Again, we estimate the probability 7y |,—7 that zip code k is drawn with a logit model with the same
regressors as in frames 4 and 6.
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