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1 Introduction

The demand for health is one of the most central topics in Health Economics. The
canonical model of the demand for health arises from Grossman (1972a, 1972b, 2000)
and theoretical extensions and competing economic models are still relatively few. In
Grossman’s human-capital framework individuals invest in health (e.g., medical care,
exercise) for the consumption benefits (health provides utility) as well as production
benefits (healthy individuals have greater earnings) that good health provides. The
model provides a conceptual framework for interpretation of the demand for health and
health investment in relation to an individual’s resource constraints, preferences, and
consumption needs over the life cycle. Arguably the model has been one of the most
important contributions of economics to the study of health behavior. It has provided
insight into a variety of phenomena related to health, health investment, inequality in
health, the relationship between health and socioeconomic status, occupational choice,
etc. (e.g., Cropper, 1977; Muurinen and Le Grand, 1985; Case and Deaton, 2005) and has
become the standard (textbook) framework for the economics of the derived demand for
medical care.

Yet several authors have identified at least four significant limitations to the literature
spawned by Grossman’s seminal 1972 papers1 (see Grossman, 2000, for a review and
rebuttal of some of these limitations). A standard framework for the demand for health,
health investment, and longevity, has to meet the significant challenge of providing
insight into a variety of complex phenomena. Ideally it would explain the significant
differences observed in health between socioeconomic status (SES) groups - often called
the “SES-health gradient”. In the United States, a 60-year-old top-income-quartile male
reports to be in similar health as a 20-year-old bottom-income-quartile male (Case and
Deaton 2005) and similar patterns hold for other measures of SES, such as education
and wealth, and other indicators of health, such as disability and mortality (e.g., Cutler,
Lleras-Muney and Vogl, 2011; van Doorslaer et al. 2008). Initially diverging, the disparity
in health between low- and high-SES groups appears to narrow after ages 50-60. Yet, Case
and Deaton (2005) have argued that health-capital models are unable to explain differences
between SES groups in the rate at which health deteriorates.

Another stylized fact of the demand for medical care is that healthy individuals do
not go to the doctor much: a strong negative correlation is observed between measures
of health and measures of health investment. However, Wagstaff (1986a) and Zweifel and
Breyer (1997) have pointed to the inability of health-capital models to predict the observed
negative relation between health and the demand for medical care.

Introspection and casual observation further suggests that healthy individuals are those
that began life healthy and that have invested in health over the life course. Thus one
would expect that health depends on initial conditions (e.g., initial health) and the history
of health investments, prices, wages, medical technology, and environmental conditions.

1Throughout this paper I refer to this literature as the health-capital literature.
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Yet, Usher (1975) has pointed to the lack of “memory” in model solutions, and Wagstaff
(1993) has argued that Grossman’s empirical formulation fails to capture the dynamic
character of the model. For example, the solution for health does not depend on its
initial value or the histories of health investment and biological aging (see, e.g., equations
42, 45 and 47 in Grossman, 2000). Thus the model would, for example, not be able to
reproduce the observation that endowed health at birth and investments in early childhood
have sustained effects on adult outcomes (e.g., Heckman, 2007; Currie and Almond, 2011;
Campbell et al., 2014). Clearly, the static nature of the derived solution for health is
incompatible with the inherently dynamic nature of health formation.

Further, Case and Deaton (2005) note that “. . . If the rate of biological deterioration
is constant, which is perhaps implausible but hardly impossible, . . . people will “choose” an
infinite life . . . ” Hence, a feature of the model is that complete health repair is possible
if the rate of biological ageing is constant. Declines in health status are driven not by
the rate of biological ageing, but by its rate of increase. Case and Deaton (2005) argue,
however, that a technology that can effect such complete health repair is implausible.2

In this paper I argue that there are two fairly simple, but so far largely misunderstood,
solutions to two issues that give rise to the above limitations of the Grossman model, as
follows. First, I show that the condition for the “equilibrium” health stock is in fact the
first-order condition for health investment. This condition should be used to determine
health investment and the dynamic equation for health should be used to determine health.
Second, the health-capital literature makes two important assumptions, for mathematical
convenience, which lead to a degeneracy.3 This degeneracy arises in the Grossman model
under the commonly made assumptions of (i) a health-production function f [I(t)] that
is linear in health investment, i.e., f [I(t)] = I(t), and (ii) a health-investment process
in which goods/services purchased in the market m(t) and own time τI(t) combine to
produce investment I(t) according to a constant returns to scale (CRTS) technology,
i.e. I(t) = µ(t)m(t)κI τI(t)

1−κI . Under these two assumptions the Hamiltonian of the
constrained optimization problem is linear in I(t), m(t), and τI(t). Since the optimality
condition for these three (related) controls are derived by taking the derivative of the
Hamiltonian with respect to the controls, the controls themselves are no longer part of
the optimality condition (they drop out because of the imposed linearity) and their value
cannot be determined. Lacking ability to derive an expression for investment, the model
essentially breaks down: without investment it is not possible to derive the paths of health,
wealth, and consumption.

Ehrlich and Chuma (1990) were the first to note this indeterminacy (“bang-bang”)
problem. Still, the importance of this observation has gone largely unnoticed:

2I highlight these four criticisms because they represent, in my opinion, important critiques of the
canonical theory that have not yet been satisfactorily addressed. There are other criticisms of the model.
For example, I do not include criticisms that argue for useful extensions, such as the inclusion of uncertainty.

3A degenerate case is a limiting case in which a class of solutions changes its nature so as to belong to
another, usually simpler, class. It has special features, which depart from the properties that are generic
in the wider class, and the nature of the degenerate solution is generally lost under a small perturbation.
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contributions to the literature that followed the publication of Ehrlich and Chuma’s work
in 1990 have continued to assume a health-production function with CRTS in health
investment,4 and the issue is deemed to be insufficiently important in a recent critique
of the Grossman model (Zweifel, 2012) as well as in a subsequent reply to Zweifel in
the model’s defense (Kaestner, 2013). This may be as a consequence of the following
factors. First, Ehrlich and Chuma’s finding that health investment is undetermined, under
the usual assumption of a CRTS health-production process, is incidental to their main
contribution of introducing the demand for longevity and the authors did not explore the
full implications of relaxing the assumption. Second, Ehrlich and Chuma’s argument
is brief and technical.5 This has led Ried (1998) to conclude that “. . . [Ehrlich and
Chuma] fail to substantiate either claim [bang-bang and indeterminacy] . . . ” Third, there
is an incorrect notion that Ehrlich and Chuma had changed the structure of the model
substantially and that “. . . their results need not apply to the original model.” (Ried, 1998).
Last, it is thought that introducing decreasing returns to scale (DRTS) has little impact on
the basic characteristics and predictions of the model (Grossman, 2000; Kaestner, 2013).
For example, it is believed that it results in individuals reaching the desired health stock
gradually rather than instantaneously (e.g., Grossman, 2000, p. 364) – perhaps not a
sufficiently important improvement to warrant the introduction of DRTS.

I present a theory of the demand for health, health investment and longevity based on
Grossman (1972a, 1972b) and the extended version of this model by Ehrlich and Chuma
(1990). Specifically, I stay as close as possible to Grossman’s original formulation, but
allow for the possibility that the health-production process is not strictly linear in health
investment, i.e. f [I(t)] = I(t)α, where α 6= 1, and focus on the DRTS case, i.e. 0 < α < 1.
I also model endogenous longevity (as in Ehrlich and Chuma, 1990): individuals invest
in the quantity of life (longevity) as well as the quality of life (health and consumption).
The model is similar to Ehrlich and Chuma (1990).6

The contribution of this paper is as follows. I start by providing detailed proof of
Ehrlich and Chuma’s (1990) claim that health investment is not determined for the
canonical CRTS model. This is important as Ried (1998) has concluded that Ehrlich
and Chuma (1990) failed to substantiate their claim, the literature does not seem to
consider the issue to be of importance, and there are some that question whether the issue
exists altogether (e.g., Ried, 1998; Grossman, 2000; Laporte, 2014; Strulik, 2014). This
contribution reaffirms and strengthens Ehrlich and Chuma’s (1990) observation.

However, addressing the indeterminacy of investment is not sufficient to address the

4E.g., Bolin et al. (2001, 2002a, 2002b, 2003), Case and Deaton (2005), Erbsland, Ried and Ulrich
(2002), Jacobsen (2000), Leu and Gerfin (1992), Liljas (1998), Nocera and Zweifel (1998), Ried (1996,
1998). To the best of my knowledge, the only exception is an unpublished working paper by Dustmann
and Windmeijer (2000) who take Ehrlich and Chuma (1990) as their point of departure.

5It involves a reference to a graph with health investment on one axis and the ratio of two Lagrange
multipliers on the other. The authors note that the same results hold in a discrete time setting, using a
complicated proof based on the last period preceding death (see their footnote 4).

6Ehrlich and Chuma (1990) model DRTS as operating through the cost of investment function, whereas
I model DRTS through the production function of health. Mathematically these two approaches are similar.
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four major criticisms directed at the Grossman model. I therefore also make the following
unique contributions. First, I argue for a reinterpretation of the “equilibrium” condition
for health, one of the most central relations in the health-capital literature. Instead of
determining the health stock, as is generally assumed,7 it is a dynamic relation determining
the optimal level of health investment. This condition should be used to determine health
investment and the dynamic equation for health should be used to determine health.8 I
show that incorrect use of these conditions gives rise to the four major criticisms.

Second, I show that CRTS are associated with repeated “bang-bang” behavior in
which at any time there exists a difference between the actual health stock and an
“equilibrium” health stock that is being dissipated by instantaneous adjustments of the
stock. Such bang-bang behavior, however, cannot be analyzed analytically, and, Ried
(1998) has correctly suggested that it is not consistent with the notion of equilibrium. I
therefore conclude that the standard CRTS assumption is significantly flawed, representing
a degenerate case, i.e. a highly unusual special case (of a more general class of models) for
which the model breaks down. Abandoning this unnecessary and restrictive assumption,
adopting the reinterpretation of the equilibrium condition, and analyzing the resulting
dynamic model I find the theory to be capable of reproducing the phenomena discussed
above and of addressing the four major criticisms leveled at the Grossman model.

Third, the static relations that are often employed in empirical testing of the Grossman
model would require the equilibrium health stock to be associated with the steady-state
equilibrium (so that it has no “memory” of the past). However, I show that the steady
state is not the solution to the optimization problem, that the Grossman model is dynamic,
and that the current health state depends on past conditions (addressing the criticism of
Usher, 1975, and Wagstaff, 1993). Also, the intuition that individuals reach a certain
“desired” health stock gradually (for DRTS) rather than instantaneously (for CRTS) is
not correct, since there exists no such desired health level for DRTS.

Fourth, despite functioning for more than 40 years as the canonical theory for the
demand for health, there are as of yet no publications presenting its comparative dynamics
in much detail.9 I present detailed comparative dynamic analyses of the full DRTS
Grossman model for variation in socioeconomic status (wealth, wages, and education) and
health. I obtain several new results. Wealthy (high SES) individuals invest more in health,

7The notion of an “equilibrium” condition for health is common. See, e.g., the discussions on p.
355-356 of Grossman (2000) and p. 769-770 of Ehrlich and Chuma (1990), Cropper (1981), Muurinen
(1982), Wagstaff (1986a), and the references in footnote 4.

8Of the references in footnotes 4 and 7, Erbsland, Ried and Ulrich (2002), Grossman (1972a, 1972b,
2000), Leu and Gerfin (1992), Muurinen (1982), Nocera and Zweifel (1998), and Ried (1996, 1998) are
explicit about the use of the dynamic equation for health to determine health investment (the opposite of
its intended use), whereas the remaining references are silent on the determination of investment.

9Ried (1998) has conducted such an analysis, but since he relies on CRTS his analysis suffers from the
aforementioned degeneracy. Ehrlich and Chuma (1990) have presented directional results (broadly whether
an effect is likely to be positive or negative; their Table 3). Eisenring (1999) presents a comparative dynamic
analysis of a highly simplified Grossman-type model without consumption, without assets, and for fixed
length of life. In short, the comparative dynamics of the Grossman model have not yet been fully analyzed,
in particular since such analyses are not limited to simple directional predictions.
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and as result their health deteriorates more slowly (addressing the first criticism of Case
and Deaton, 2005), and they live longer. Health investment is higher and increases less
rapidly with age for wealthier (higher SES) individuals if wealth (SES) enables moderate
life extension (flatter investment profile) and more rapidly with age if wealth (SES) enables
substantial life extension (steeper investment profile). And, healthy individuals potentially
invest less in health (addressing the criticism of Wagstaff, 1986a; Zweifel and Breyer, 1997).

Fifth, an interesting consequence of the literature’s focus on the degenerate case is
that empirical tests of the Grossman model are still in their infancy. Thus far, tests of the
Grossman model have almost exclusively relied on relations derived from the degenerate
model and have employed the incorrect equilibrium condition.10 Absent an equivalent
relation for a DRTS health-production process I derive a structural dynamic relation
between health and health investment to guide empirical testing.

Last, I perform numerical simulations to illustrate the properties of the theory. These
simulations corroborate the analytical results presented in this paper and show that the
model is capable of reproducing the rapid increase in health investment near the end of life,
and that the optimal solution for length of life is finite (even for a constant biological aging
rate), addressing the second criticism by Case and Deaton (2005) that health-production
models are characterized by complete health repair. Thus all four criticisms are resolved.

The implications of this work extend beyond health economics. Economic theories are
often formulated assuming linear relations in controls. As a result, many economic models
suffer from similar forms of degeneracy, associated with indeterminacy and “bang-bang”.
For example, the theory of firm-investment behavior also assumes CRTS in investment and
employs comparable conditions for investment and comparable notions of an “equilibrium”
or “desired” level of capital (e.g., Jorgensen 1963, 1967). The theory of investment
behavior in turn provides the foundation for the analysis of firms in models of economic
growth. As my analyses suggest, while linearity may appear attractive for its simplicity,
it can have serious and relatively hidden consequences.

The paper is organized as follows. Section 2 presents the model in continuous time
and discusses the characteristics of the first-order conditions. In particular this section
offers an alternative interpretation of the equilibrium condition for health. Section 3
explores the properties of a DRTS health-production process, in several ways, by: a)
exploring a stylized representation of the first-order condition for health investment to
gain an intuitive understanding of its properties, b) analyzing the effect of differences in
socioeconomic status (wealth, wages, and education) and health on the optimal level of
health investment, c) developing structural-form relations for empirical testing, and d)

10E.g., Erbsland, Ried, and Ulrich (2002); Gerdtham and Johannesson (1999); Gerdtham et al. (1999);
Grossman (1972a); Leu and Doppmann (1986); Leu and Gerfin (1992); Nocera and Zweifel (1998); Van
de Ven and Van der Gaag (1982); Wagstaff (1986a, 1993); Van Doorslaer (1987). A more recent literature
has numerically (not analytically as in this paper) solved and estimated dynamic formulations based
(sometimes loosely) on health-capital theory using dynamic programming techniques, and taking into
account a health-production process that is subject to decreasing returns to scale in investment (e.g.,
Ehrlich and Yin, 2005; Fonseca et al. 2013; Gilleskie, 1998, 2010; Hugonnier, Pelgrin and St-Amour, 2013;
Khwaja, 2010; Scholz and Seshadri, 2012; Yogo, 2009).
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presenting numerical simulations of the model. Section 4 summarizes and concludes. The
Appendix provides detailed derivations and mathematical proofs.

2 The demand for health, health investment, and longevity

I follow Grossman’s basic formulation (Grossman, 1972a, 1972b, 2000) for the demand for
health and health investment in continuous time, with two extensions: I allow 1) for a
flexible health-production process with DRTS in investment, and 2) for length of life to
be optimally chosen (as in Ehrlich and Chuma, 1990).11

Using continuous time optimal control (e.g., Caputo 2005) the problem can be stated
as follows. Individuals maximize the life-time utility function∫ T

0
U [C(t), H(t)]e−βtdt, (1)

where T denotes length of life (endogenous), β is a subjective discount factor, and
individuals derive utility U [C(t), H(t)] from consumption C(t) and from health H(t).
Time t is measured from the time individuals begin employment. Utility increases with
consumption ∂U/∂C > 0 and with health ∂U/∂H > 0.

The objective function (1) is maximized subject to the dynamic constraints:

∂H(t)

∂t
= f [I(t)]− d(t)H(t), (2)

∂A(t)

∂t
= δA(t) + Y [H(t)]− pX(t)X(t)− pm(t)m(t), (3)

the total time budget Ω

Ω = τw(t) + τI(t) + τC(t) + s[H(t)], (4)

and initial and end conditions: H0, HT , A0 and AT are given. Life can no longer be
sustained below a minimum health level Hmin (H(T ) = HT ≡ Hmin).

Health (equation 2) can be improved through investment in health I(t) and deteriorates
at the biological aging rate d(t). The relation between the input, health investment
I(t), and the output, health improvement, is governed by the health-production function
f [I(t)], assumed to obey the law of diminishing marginal returns to health investment
(∂2f/∂I2 < 0). For simplicity of exposition I use the following simple functional form

f [I(t)] = I(t)α, (5)

11In line with Grossman (1972a; 1972b) and Ehrlich and Chuma (1990) I do not incorporate uncertainty.
This would unnecessarily complicate the optimization problem and is not needed to explain the stylized
facts regarding health behavior discussed in this paper. For a detailed treatment of uncertainty within the
Grossman model the reader is referred to Ehrlich (2000), Liljas (1998), and Ehrlich and Yin (2005).
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where 0 < α < 1 (DRTS).12 Note that for α = 1 we retrieve the usual formulation
(Grossman 1972a, 1972b).

Assets A(t) (equation 3) provide a return δ (the rate of return on capital), increase
with income Y [H(t)] and decrease with purchases in the market of consumption goods and
services X(t) and health investment goods and services m(t) (e.g., medical care) at prices
pX(t) and pm(t), respectively. Income Y [H(t)] is assumed to be increasing in health H(t)
as healthy individuals are more productive and earn higher wages (Currie and Madrian,
1999; Contoyannis and Rice, 2001).

Goods and services X(t) purchased in the market and own time inputs τC(t) are used
in the production of consumption C(t). Similarly goods and services m(t) and own time
inputs τI(t) (e.g., exercise, time spent visiting the doctor) are used in the production of
health investment I(t). The efficiencies of production are assumed to be a function of
the consumer’s stock of knowledge E (an individual’s human capital exclusive of health
capital [e.g., education]) as the more educated may be more efficient at investing in health
(see, e.g., Grossman 2000):

I(t) = I[m(t), τI(t);E], (6)

C(t) = C[X(t), τC(t);E]. (7)

The total time available in any period Ω (equation 4) is the sum of all possible uses
τw(t) (work), τI(t) (health investment), τC(t) (consumption) and s[H(t)] (sick time; a
decreasing function of health). In this formulation one can interpret τC(t), the own-time
input into consumption C(t) as representing leisure.13

Income Y [H(t)] is taken to be a function of the wage rate w(t) times the amount of
time spent working τw(t),

Y [H(t)] = w(t) {Ω− τI(t)− τC(t)− s[H(t)]} . (8)

Thus, we have the following optimal control problem: the objective function (1) is
maximized with respect to the control functions X(t), τC(t), m(t), and τI(t), subject to
the constraints (2, 3 and 4). The Hamiltonian of this problem is:

=(t) = U [C(t), H(t)]e−βt + qH(t)
∂H

∂t
+ qA(t)

∂A

∂t
, (9)

where qH(t) is the co-state variable associated with the dynamic equation (2) for the

12Mathematically, equation (5) is equivalent to Ehrlich and Chuma’s (1990) assumption of a
dual cost-of-investment function with decreasing returns to scale (their equation 5) and a linear
health-production process (α = 1 in this paper’s equation 5). Conceptually, however, there is an important
distinction: it is not the process of health investment (equation 6 in this paper) but the process of health
production (the ultimate effect on health) that is expected to exhibit decreasing returns to scale.

13Because consumption consists of time inputs and purchases of goods/services in the market one can
conceive leisure as a form of consumption consisting entirely or mostly of time inputs. Leisure provides
utility and its cost consists of the price of goods/services utilized and the opportunity cost of time.
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state variable health H(t), and qA(t) is the co-state variable associated with the dynamic
equation (3) for the state variable assets A(t).14

The co-state variables qH(t), and qA(t), find a natural economic interpretation in the
following standard result from Pontryagin

qH(t) =
∂

∂H(t)

∫ T ∗

t
U(∗)e−βsds, (10)

qA(t) =
∂

∂A(t)

∫ T ∗

t
U(∗)e−βsds, (11)

(e.g., Caputo 2005, eq. 21 p. 86), where T ∗ denotes optimal length of life, and U(∗)
denotes the maximized utility function (i.e., along the optimal paths for the controls,
state functions, and for the optimal length of life). Thus, for example, qH(t) represents
the marginal value of remaining lifetime utility (from t onward) derived from additional
health H(t). I refer to the co-state functions as the “marginal value of health” and the
“marginal value of wealth”.

As Ehrlich and Chuma (1990) noted, a transversality condition is required for the
optimal length of life T . The condition follows from the dynamic envelope theorem (e.g.,
Theorem 9.1, p. 232 of Caputo, 2005):

∂

∂T

∫ T ∗

t
U(∗)e−βsds =

∂

∂T

∫ T

0
=(t)dt = =(T ) = 0. (12)

Thus, =(T ) represents the marginal value of remaining lifetime utility (from t onward)
derived from additional longevity T ), i.e. it is the “marginal value of life extension”, and
the age at which life extension no longer has value defines the optimal length of life T ∗.

2.1 First-order conditions

Maximization of (9) with respect to the control functions m(t) and τI(t) leads to the
first-order condition for health investment I(t)

πI(t) =
qH(t)

qA(t)
, (13)

where πI(t) is the marginal cost of health investment I(t)

πI(t) ≡
pm(t)I(t)1−α

α[∂I/∂m]
=
w(t)I(t)1−α

α[∂I/∂τI ]
. (14)

14Strictly speaking, an additional term in the Hamiltonian (making it officially a Lagrangian) is needed,
λHmin(t) [H(t)−Hmin], associated with the condition that H(t) > Hmin for t < T (λHmin(t) = 0 if
H(t) > Hmin and λHmin(t) > 0 if H(t) ≤ Hmin). In practice, employing the condition entails restricting
solutions to those where the constraint is not imposing (section 3.4 shows how this is implemented). Thus,
for any feasible solution we have λHmin(t) = 0 for all t, and the condition can be ignored.
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Using (50), integrating the dynamic co-state equation for the marginal value of health
qH(t) (51), and inserting the expression in (13) we obtain an alternative expression for the
first-order condition for health investment I(t)

πI(t) = πI(0)e
∫ t
0 [d(u)+δ]du −

∫ t

0

[
1

qA(0)

∂U

∂H
e−(β−δ)s +

∂Y

∂H

]
e
∫ t
s [d(u)+δ]duds, (15)

where qA(0) is the marginal value of initial wealth.15

Using either the expression (15) or (16) for the first-order condition for health
investment and taking the derivative with respect to time t we obtain the following
expression

1

qA(0)

∂U

∂H
e−(β−δ)t +

∂Y

∂H
= σH(t), (17)

where σH(t) is referred to as the user cost of health capital at the margin

σH(t) ≡ πI(t)[d(t) + δ]− ∂πI
∂t

. (18)

Last, maximization of (9) with respect to the control functions X(t) and τC(t) leads
to the first-order condition for consumption C(t)

∂U

∂C
= qA(0)πC(t)e(β−δ)t, (19)

where πC(t) is the marginal cost of consumption C(t)

πC(t) ≡ pX(t)

∂C/∂X
=

w(t)

∂C/∂τC
. (20)

The first-order condition (13) (or the alternative forms 15, 16, and 17) determines the
optimal solution for the control function health investment I(t). The first-order condition
(19) determines the optimal solution for the control function consumption C(t).16 The
solutions for the state functions health H(t) and assets A(t) then follow from the dynamic
equations (2) and (3). These optimal control and optimal state functions are functions of
the co-states qA(t) and qH(t). The co-states are obtained by solving the dynamic co-state
equations (50) and (51), imposing the life-time budget constraints for wealth and health
(integrating 2 and 3), and imposing the begin and end conditions. Last, length of life T is
determined by the transversality condition (12). This dynamic (step) process is explained
in more detail in section 3.4.1.

15One can also use the final period T as point of reference, to obtain

πI(t) = πI(T )e−
∫ T
t [d(u)+δ]du +

∫ T

t

[
1

qA(0)

∂U

∂H
e−(β−δ)s +

∂Y

∂H

]
e−

∫ s
t [d(u)+δ]duds. (16)

16Because the first-order condition for health investment goods / services m(t) and the first-order
condition for own time inputs τI(t) are identical (see Appendix section A) one can consider a single
control function I(t) (health investment) instead of two control functions m(t) and τI(t). The same is
true for consumption C(t). Because of this property, the optimization problem is reduced to two control
functions I(t) and C(t) (instead of four) and two state functions H(t) and A(t).
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2.2 Assumptions

I make the usual assumptions of diminishing marginal utilities of consumption ∂2U/∂C2 <
0 and of health ∂2U/∂H2 < 0, and diminishing marginal production benefit of health
∂2Y/∂H2 < 0. In addition, for illustrative purposes and to stay as close as possible to
Grossman’s original formulation, I make the usual assumption of a Cobb-Douglas CRTS
relation between the inputs goods/services purchased in the market and own-time and the
output health investment I(t) (Grossman, 1972a, 1972b)

I(t) = µI(t)m(t)1−kI τI(t)
kI , (21)

where µI(t) is an efficiency factor and 1 − kI and kI are the elasticities of investment in
health I(t) with respect to goods and services m(t) purchased in the market and with
respect to own-time τI(t), respectively. Using equations (14) and (21) we have

πI(t) =
pm(t)1−kI w(t)kI

αkkII (1− kI)1−kI µI(t)
I(t)1−α ≡ πI(t)∗I(t)1−α. (22)

The marginal cost of health investment πI(t) increases with the price of investment
goods and services pm(t), and the opportunity cost of not working w(t), and decreases in
the efficiency µI(t) of the use of investment inputs in the investment process (21). Because
of diminishing returns to scale in investment, the marginal cost of health investment πI(t)
is an increasing function of the level of investment I(t).17 In contrast, for the canonical
CRTS health-production process (α = 1) the marginal cost of health investment is no
longer a function of the level of health investment I(t).

2.3 An alternative interpretation of the first-order condition

One of the most central relations in the health-capital literature is the first-order condition
(17). This relation equates the sum of the marginal consumption benefit of health
qA(0)−1∂U/∂H and the marginal production benefit of health ∂Y/∂H to the user cost
of health capital σH(t), and is interpreted as an equilibrium condition for the health stock
H(t).18 An alternative interpretation of (17) is, however, that this relation determines the
optimal level of health investment I(t). The argument is as follows.

First, the first-order condition (17) is the result of maximization of the optimal
control problem with respect to investment in health and hence, first and foremost, it
determines the optimal level of investment I(t). Optimal control theory distinguishes
between control functions and state functions. Control functions are determined by the
first-order conditions and state functions are determined by the dynamic equations (e.g.,

17This is because for DRTS the health improvement f [I(t)] = I(t)α of an additional amount of investment
I(t) is smaller the higher is the level of investment I(t) (the production function is flatter at higher levels
of investment due to concavity), and as a result the effective cost of investment πI(t) is higher.

18Condition (17) is the same as equation (11) in Grossman (2000) and equation (13) in Ehrlich and
Chuma (1990). See footnote 7.
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Seierstad and Sydsaeter, 1977, 1987; Kirk, 1970). The first-order condition (17) is thus
naturally associated with the control function health investment I(t) and the dynamic
equation (2) is naturally associated with the state function health H(t).19

Second, in the health-capital literature optimal health investment I(t) is assumed to be
determined by the first-order condition (13), (15), or the alternative form (16).20 However,
it can be shown that the first-order conditions (13), (15) and (16) are mathematically
equivalent to (17) (for proof see Appendix section D). Thus if equation (13), (15), or (16), is
the first-order condition for health investment I(t) (the interpretation in the health-capital
literature) then equation (17) is too (and vice versa).

In the remainder of this paper I will use relations (13), (15), (16), and (17) as
being equivalent. They are alternative expressions of the first-order condition for optimal
investment I(t), but, they are fundamentally the same. One follows from the other through
differentiation or by integration.

This result may seem trivial, and it perhaps is, but the literature interprets relations
(13), (15), and (16), as being distinct from the condition (17). The former three
conditions are interpreted as determining optimal health-investment decisions and the
latter is employed to analyze equilibrium health. Further, because the conditions for
health investment (13), (15), and (16), are complex, in practice the literature employs the
dynamic equation for health (2) to obtain health investment I(t).21 Thus, the literature
employs a first-order condition for health investment to derive health and a dynamic
relation for health to obtain health investment (the exact opposite of their intended use).22

The four criticisms: With these considerations in mind, let us revisit the four criticisms
directed at the Grossman model (see section 1) to understand how they arise. The
condition for health investment (13) provides a relation for the demand for investment
I(t) as a function of current prices pm(t), current wages w(t), current efficiency µI(t)
(through πI(t); see 22), current health H(t), and current wealth A(t) (through qH(t) and
qA(t)). The literature then uses the condition for investment (13) to obtain an expression
for health. As discussed above, this is not the correct use of this relation. After all, it
is a relation describing the demand for health investment as a function of health, not
the other way around. Indeed, incorrect use results in an expression for health that
is a function of current conditions. In other words, the resulting solution for health is

19Analogously, the first-order condition (19) is associated with the control variable consumption C(t)
and the dynamic equation (3) is associated with the state function assets A(t).

20Condition (13), (15) (or the alternative form 16) is the same as equation (9) in Grossman (2000) and
equation (8) in Ehrlich and Chuma (1990).

21See, e.g., Grossman (1972a, 1972b, 2000) and footnote 8.
22Due to CRTS, the first-order condition for health investment is not a function of investment (see 22 for

α = 1). But it is a function of health. Since the condition can not be used to determine investment, it was
perhaps used to determine health, and given health, health investment can be derived from the dynamic
equation for health (2). Further, human-capital theory has roots in the theory of investment behavior of
the firm. The initial literature in this area also assumes CRTS and employs comparable conditions for
investment and for “equilibrium” capital (e.g., Jorgensen 1967). These concepts may have carried over.

12



not intrinsically dynamic and does not depend on its starting point and the history of
subsequent investments made, explaining the criticisms by Usher (1975) and Wagstaff
(1993). Likewise, complete health repair is possible because for CRTS one can obtain
conditions for which health remains constant, explaining the criticism by Case and Deaton
(2005). Further, the widening of the health gradient between socioeconomic groups is a
dynamic process, but the condition that is used to obtain health is not dynamic, explaining
another criticism by Case and Deaton (2005).

Conversely, the dynamic relation for health (2) describes the evolution of health as a
function of initial health status and the history of aging and investments made (see 87).
This relation is, however, employed to determine the demand for investment, which is
found to be greater for those in better health, explaining the criticism of Wagstaff (1986a)
and Zweifel and Breyer (1997).

Thus, these four criticisms can be explained by the fact that the relation for health
investment (13) is used to determine health, and the dynamic relation for health (2) is used
to determine health investment. In the remainder of the paper, I show in more detail that
employing (2) and (13) correctly, i.e. for their intended use, addresses the four criticisms.

3 The health-production process

In this section I explore the properties of the health-production process in several ways.
I present a stylized representation of the first-order condition for health investment to
gain an intuitive understanding of its properties (section 3.1). In particular, I contrast
the characteristics of the solution for health investment under a CRTS health-production
process with that of a DRTS process, and provide additional arguments to show that the
CRTS case suffers from indeterminacy of health investment (as Ehrlich and Chuma, 1990,
have argued). This is not just a technicality but in fact a serious problem. Essentially,
the model breaks down. For this reason I prefer to refer to the issue as a mathematical
degeneracy, rather than an indeterminacy.

There are at least two ways to address the degeneracy. The preferred solution, in my
opinion, is to allow for a more flexible functional form of the production process, and
DRTS in investment represents the more natural case.23 I then further develop this case,
showing that, together with the alternative interpretation of the equilibrium condition for
health (section 2.3), it addresses the four major criticisms leveled at the Grossman model. I
explore the effect of differences in socioeconomic status (wealth, wages, and education) and
health on the optimal level of health investment, health, and longevity, using comparative

23The other solution is to maintain the assumption of CRTS in health investment and to replace the
dynamic wealth equation (3) with an instantaneous budget constraint, i.e. expenditures on consumption
and health investment equal earnings at each instant (Cropper, 1977; Laporte, 2014; Strulik, 2014). Such
a model, however, cannot inform us about the relation between wealth and health (since wealth is absent
from the model), and is a stronger departure from the Grossman model than is DRTS in health investment.
It also maintains an assumption of strict linearity in health investment which is hard to defend: twice the
amount of exercise or chemotherapy does not precisely double health improvement.
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dynamic methods (section 3.2), derive a structural-form relation for empirical testing of
the model (section 3.3), and perform numerical simulations to illustrate the workings of
the model and to corroborate analytical results (section 3.4).

3.1 Stylized representations

3.1.1 CRTS: the indeterminacy of investment

In the following I show that for a CRTS health-production process the first-order condition
for health investment is not a function of investment. As a result, health investment is
undetermined and associated with “bang-bang” behavior.

Indeterminacy: Figure 1 provides a stylized representation of the first-order condition
(13) for health investment for a CRTS (solid lines) and DRTS (dashed lines)
health-production process: it graphs the marginal benefit qh/a(t) = qH(t)/qA(t) and
marginal cost πI(t) of health investment as a function of investment I(t) (left-hand side;
LHS) and as a function of health H(t) (right-hand side; RHS).

Consider the LHS and CRTS (solid lines) first. The marginal benefit of health
investment consists of the ratio of the marginal value of health and the marginal value of
wealth qh/a(t). This ratio, according to Ehrlich and Chuma (1990), is not a function of
health investment I(t).24 This is shown as the horizontal solid line labeled qh/a(t). For a
CRTS health-production proces, πI(t) is also not a function of health investment I(t) (see
22 for α = 1). This is shown as the horizontal solid line labeled πI(t).

Because individuals can adjust their health only gradually through health investment,
the level of the health stock H(t)true at age t is given and provides a constraint to the
optimization problem at age t. Generally the constraint provided by H(t)true will result
in different values for the marginal benefit qh/a(t) (a function of health; see 10 and 11)
and marginal cost of health investment πI(t) (not a function of health): this is depicted
by the two horizontal lines having distinct levels (they do not overlap). The intersection
of the two solid curves would determine the optimal level of health investment I(t) but
since they run in parallel this does not occur. Thus no unique optimal solution for health
investment I(t) exists.25 Each optimality condition serves a particular role (see section

24As Ried (1998) noted, Ehrlich and Chuma (1990) do not provide proof for their claim. However, it is a
standard result of Pontryagin’s maximum principle and is relatively straightforward to obtain (perhaps this

explains why it was omitted). From (10) and (11) we have qH(t) = ∂V (t)/∂H(t) = ∂[
∫ T∗

t U(∗)e−βsds]/∂H(t)

and qA(t) = ∂V (t)/∂A(t) = ∂[
∫ T∗

t U(∗)e−βsds]/∂A(t), where V (t) is the indirect utility function. Since V (t)
is obtained by inserting the optimal solutions in the life-time utility function, it is no longer a function of
investment, or for that matter of any control or state function (except for the current and end states).

25Laporte (2014) has questioned Ehrlich and Chuma’s (1990) argument, as follows. She combines the
first-order conditions for health investment (13) and for consumption (19) (her conditions 37 and 38) to
obtain ∂U/∂C = qH(t)πI(t)πC(t)eβt (her condition 40 in my notation). This condition is identical to the
first-order condition for health investment in her model, a model with an instantaneous budget constraint,
for which there is no indeterminacy. There is no indeterminacy in her model because with an instantaneous
budget constraint I(t) = Y (t) − C(t), and since consumption C(t) is determined, health investment I(t)
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Figure 1: Marginal benefit qh/a(t) = qH(t)/qA(t) versus marginal cost πI(t) of health investment
for a CRTS (solid lines) and DRTS (dashed lines) health-production process.

2.1). If one of the relations breaks down the entire model breaks down.26

Bang-bang: Now consider the RHS of Figure 1 and CRTS (solid lines). The marginal
benefit of health investment qh/a(t) is downward sloping to represent the case where
healthy individuals invest less in health.27 The marginal cost of health investment πI(t)
is independent of health (see 22). As the graph shows, for the actual level of health
H(t)true the marginal benefit qh/a(t) is not equal to the marginal cost πI(t). Thus, there
is a discrepancy between the marginal benefit qh/a(t) and marginal cost πI(t) of health
investment. There is, however, a unique level of health H(t)∗ for which they are equal. The
health-capital literature assumes this unique solution H(t)∗ describes the “equilibrium”
or “desired” health stock.28 If health could be adjusted to the level H(t)∗, condition (13)
would equilibrate. But, health can adjust only gradually through investments made over
time (see 2). The usual interpretation is that this results in a so-called “bang-bang” control
(e.g., Ehrlich and Chuma, 1990), i.e. a control that switches abruptly between (boundary)
states. For the Grossman model, however, there is no clear upper or lower boundary to
health investment (the control)29 and the implicit assumption is that health investment

is also determined. The problem with this argument, however, is that in the Grossman model with a
dynamic budget constraint the first-order conditions (13) and (19) also need to hold independently, and
as discussed above, the condition for optimal investment (13) does not hold for CRTS.

26Proof is provided in Appendix section E that the indeterminacy also holds for the alternative
expressions for the first-order condition for health investment (15), (16), and (17).

27The opposite case is possible too, but the general result obtained here does not depend on it.
28The assumption is made explicitly by assuming (17) determines health. See footnote 7.
29Galama and Kapteyn (2011) and Galama et al. (2013), however, impose non-negative investment.
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(or disinvestment, depending on whether H(t)true is above or below H(t)∗) is infinitely

large for an infinitesimally small amount of time (so that
∫ t+δt
t I(s)ds is still finite) and

health jumps instantaneously from H(t)true to H(t)∗, so that (13) equilibrates.30 Ried
(1998) correctly identifies such behavior as inconsistent with equilibrium.

Further, even for H(t)∗ the first-order condition for health investment (13) holds only
momentarily. An instant ε later, the marginal cost πI(t + ε) is no longer equal to the
marginal benefit qh/a(t+ ε), since the marginal cost is exogenously determined for CRTS
(see 22 for α = 1), and there is no guarantee that it evolves in step with the marginal
benefit.31 As a result, the difference in health needs to be repeatedly dissipated (there is
no end to the bang-bang behavior). Such a model cannot be analyzed analytically.32

Last, the different experiences of developing and developed countries suggest that the
economic principle of eventually diminishing returns applies to health production. Quite
modest increases in expenditures on health inputs (food, sanitation) have relatively large
impacts on health in the developing world, whereas large increases in resources in the
developed world have a relatively modest impact (e.g., Wagstaff, 1986b).

Thus, empirical and analytical considerations suggest the restrictive assumption of
CRTS has to be avoided.

3.1.2 DRTS: the dynamic nature of investment and health

In contrast to a CRTS health-production process, for a DRTS process (∂2f/∂I2 < 0) the
marginal cost of health investment πI(t) is increasing in the level of investment (see 22).
As a result, a unique level of investment I(t)∗ exists (see LHS of Figure 1, dashed line), for
which the marginal cost of health investment πI(t) equals the marginal benefit of health
investment qh/a(t) for the true level of health H(t)true (see RHS of Figure 1, dashed line).
DRTS thus addresses the indeterminacy (e.g., Ehrlich and Chuma, 1990) as well as the
“bang-bang” nature of investment, since there is no longer a discrepancy between H∗(t)
and H(t)true (they are identical).33 In other words, for DRTS there is no “desired” health
stock H(t)∗. Further, because a unique solution for investment I(t)∗ exists for every period
t, the solution for health H(t) can be obtained through (2; see also 87), and health is found

30Implicitly, by assuming (13) (or 15, 16, or 17) holds at all times for CRTS (as the literature does), the
difference in health is assumed to dissipate instantaneously (or else 13 would not hold) and at no cost (the
jump in investment is not accounted for in the budget constraint 3).

31Formal proof is provided in Appendix section F.
32Because of this, the mathematics field of optimal control devotes effort to finding optimal algorithms

and programming methods to compute bang-bang constrained optimal-control problems (e.g., see the
introduction of Kaya, Lucas and Simakov, 2004). Arrow (1968) concludes that the theory of the firm
with linear investment in capital (very similar to the Grossman model) cannot be solved analytically, and
presents an algorithm to describe the bang-bang solution.

33For those who remain skeptical about the indeterminacy, the challenge is to use the first-order condition
for health investment (13, or the alternative forms 15, 16, and 17) to obtain an explicit expression for health
investment I(t). For DRTS, (13) with (22) provides such an expression. For CRTS (α = 1) this relation
breaks down. Analogously, (19) provides an explicit relation for consumption C(t) because of diminishing
marginal utility, but, if utility were linear in consumption, consumption would be undetermined.
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to be a function of past levels of health investment I(s) and past biological aging rates
d(s) (0 ≤ s < t) addressing the criticism of Usher (1975) and Wagstaff (1993).34

In the following discussion, it is useful to conceptually equate the marginal cost
of investment with the level of investment, as high marginal cost implies a high level
of investment (see 22), for given exogenous wages w(t), prices pm(t), and efficiency of
investment µI(t). Relation (17) in the form

∂πI(t)

∂t
= πI(t)[d(t) + δ]− 1

qA(0)

∂U

∂H
e−[β−δ]t − ∂Y

∂H
, (23)

is then best thought of as a dynamic relation describing the change in the level of health
investment ∂I(t)/∂t given the level of health H(t) (and other factors) at age t. Further,
from (2), (5) and (22) we obtain a dynamic relation for the change in the health stock

∂H(t)

∂t
=

(
πI(t)

πI(t)∗

)α/(1−α)
− d(t)H(t). (24)

Relations (23) and (24) include time derivatives, illustrating the dynamic nature of the
Grossman model. Both relations are functions of the marginal cost of health investment
πI(t) and of the health stock H(t). The phase diagram in Figure 2 shows the direction
of motion of the system of first-order ordinary differential equations defined by (23) and
(24), as a function of the marginal cost of health investment πI(t) (vertical axis) versus
the health stock H(t) (horizontal axis).
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Figure 2: Phase diagram of the marginal cost of health investment πI(t) versus health H(t).

34Current health H(t) is a complicated function of past conditions through the dependence of health
investment on current and past health, wealth, prices, the return to capital, the biological aging rate, the
subjective discount rate, wages, and the efficiencies of health investment and consumption.
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Regime switches occur when ∂πI(t)/∂t = 0 and ∂H(t)/∂t = 0. These boundaries
between regimes, so called null-clines, are shown by the thick lines in Figure 2 and are
obtained by setting the derivatives to zero in (23) and (24), respectively. Because of
diminishing marginal consumption ∂2U/∂H2 < 0 and production ∂2Y/∂H2 < 0 benefit,
the ∂πI(t)/∂t = 0 null-cline is downward sloping. The ∂H(t)/∂t = 0 null-cline is upward
sloping. It can be either a convex or a concave relation between πI(t) and H(t) (see 24).
Here, I show a convex relation for illustrative purposes.

The two null-clines define four distinct regions I, II, III and IV . The left-up, right-up,
left-down, and right-down block arrows indicate the direction of motion in the phase
diagram and the grey dotted lines provide example trajectories. For example, every point
in region III is associated with an evolution toward lower marginal cost of investment
πI(t) (i.e. lower investment I(t)) and higher health H(t).

While the null-clines are functions of age (directly and also indirectly through
dependence on consumption), and therefore shift over time, the nature of the diagram
is essentially unchanged as the system evolves, i.e., there are always four dynamic regions,
the πI(t)/∂t null-cline is always downward sloping, and the ∂H(t)/∂t null-cline is always
upward sloping and intersects the origin.

The intersection of the two null-clines defines the steady state, at which both πI(t) and
H(t) would be temporarily at a stand-still. The steady state, is however of little interest
as a potential solution for the system. First, it is saddle-point unstable. This is clear
from visual inspection of the phase diagram: a small deviation (perturbation) from the
steady state will evolve away from the steady state (the block arrows point away from the
steady state), except if the deviation landed on the saddle-path (the unique trajectory in
region III or region II that eventually leads to the steady state).35 Second, the steady
state is not steady: it keeps evolving / shifting. Thus, even if the trajectory was on the
infinitesimally narrow (knife edge) saddle-point path trajectory, if the steady-state moves,
the trajectory will no longer be on the saddle-point path. For the steady state to be
fixed (constant over time) the system of first-order ordinary differential equations, given
by (23) and (24), has to be of the autonomous kind: a system that does not explicitly
depend on the independent variable (in this case time t). This imposes significant and
unrealistic constraints on the nature of the model.36 Third, even if the system were of the

35A formal proof of the instability of the steady state can be obtained by calculating the Jacobian
J(π∗I , H

∗) of the linearized system at the steady state (π∗I , H
∗) and showing that the two eigenvalues are

real, non-zero, and unequal {tr[J(π∗I , H
∗)]}2 > 4det[J(π∗I , H

∗)] (theorem 13.6, p. 354 of Caputo, 2005).
36Autonomous systems of ordinary differential equations are systems that do not explicitly depend on

the independent variable (in this case time t): ∂x(t)/∂t = f [x(t)], where x(t) is a vector of N functions.
A steady state is then defined by the condition ∂x(t)/∂t = f [x(t)] = 0. Because the system does not
explicitly depend on time t, the steady state is stationary at all times t. If the system is not of the
autonomous kind, the condition ∂x(t)/∂t = g[t,x(t)] = 0 holds only temporarily (since g[t,x(t)] depends
explicitly on t), and the steady state is not stationary. The Grossman model is not autonomous, unless one
makes some very strong assumptions: that utility is additively separable in consumption C(t) and health
H(t), that the aging rate d(t), the rate of return to capital δ, prices pm(t), wages w(t), and the efficiency
of health investment µI(t) are constant, and that β = δ.
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autonomous kind, any trajectory that starts at a point that is not a steady state, cannot
reach a steady state in a finite amount of time (Theorem 13.4, p. 350, Caputo 2005).
Thus, for the steady state to be a solution to the model, the system would have to be of
the autonomous kind (which it is not), individuals would have to live infinitely long lives,
and there cannot be any perturbations (e.g., health shocks), no matter how small. Thus
the steady state is also not a candidate for the notion of a “desired” health level H(t)∗.

The starting point of the optimal trajectory for health is given by the initial condition
H(0) = H0. By definition, health eventually declines since end of life is determined by
the minimum health level H(T ) = Hmin, below which life is not sustainable, as illustrated
by the shaded area.37 Thus eventually the trajectory has to enter regions II or IV of
the phase diagram so that health declines.38 However, health investments increase with
age (e.g., Grossman 1972a,b). For example, the intake of fruit and vegetables increases
with age (Serdula et al. 2004; Pearson et al. 2005) and medical expenditures peak in the
final phase of life (Zweifel, Felder and Meiers, 1999). This suggests that optimal solutions
are best described by region II: declining health capital and increasing marginal cost of
health investment (and hence increasing levels of health investment, see equations 14 and
22) with age.

3.2 Variation in socioeconomic status and health

Comparative dynamic analyses (e.g., Oniki, 1973) allow exploration of the effect of SES
(wealth, wages [earnings], and education) and initial health on the marginal cost of health
investment πI(t) and on health H(t) by comparing the “perturbed” optimal trajectory
with respect to the “unperturbed” (or original) optimal trajectory.

The effect of variation in an initial condition or other model parameter δZ (the
“perturbation”), where Z = {A0, w(t), E,H0}, on the marginal cost of health investment
and on health can be separated into two components39

∂πI(t)

∂Z
=

∂πI(t)

∂Z

∣∣∣∣
T

+
∂πI(t)

∂T

∣∣∣∣
Z

∂T

∂Z
, (25)

∂H(t)

∂Z
=

∂H(t)

∂Z

∣∣∣∣
T

+
∂H(t)

∂T

∣∣∣∣
Z

∂T

∂Z
, (26)

where the first term on the RHS represents the response to variation in Z for constant T
and the second term the additional response due to associated variation in T .

Apart from the earlier mentioned assumptions (see section 2.2), in the following I
also assume that poorer individuals derive greater benefits from an additional increment

37The location of Hmin is not known; for illustration it is shown to the right of the steady state.
38Note that since the null-clines shift over time the trajectory may enter regions II or IV by being

overtaken by the null-clines. Thus the trajectory does not have to be in regions II or IV at all times but
may reside for some time in regions I or III.

39Note that we can restart the problem at any time t, taking A(t) and H(t) as the new initial conditions.
Thus the comparative dynamic results derived for, e.g., variation in initial wealth δA0 and initial health
δH0 have greater validity, applying to variation in wealth δA(t) and in health δH(t) at any time t ∈ [0, T ).
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of wealth than wealthier individuals, unhealthy individuals derive greater benefits from
an additional increment in health than healthier individuals, individuals with shorter
longevity benefit more from life extension, and poorer individuals benefit more from better
health (since the stock of health and the stock of wealth are to some extent substitutable
in financing consumption and leisure, e.g., Muurinen, 1982; Case and Deaton, 2005).40

3.2.1 Variation in initial assets

Fixed T First consider the case where longevity T is fixed. The comparative dynamic
effect of initial wealth on the marginal cost of health investment, keeping length of life T
fixed, is obtained by taking the derivate of (23) with respect to initial wealth A0

∂

∂t

∂πI(t)

∂A0

∣∣∣∣
T

≈ 1

qA(0)2
∂U

∂H
e−(β−δ)t × ∂qA(0)

∂A0

∣∣∣∣
T

+ [d(t) + δ]× ∂πI(t)

∂A0

∣∣∣∣
T

−
{

1

qA(0)

∂2U

∂H2
e−(β−δ)t +

∂2Y

∂H2

}
× ∂H(t)

∂A0

∣∣∣∣
T

, (27)

where it is assumed that the indirect effects of wealth are small compared to the direct
effects of wealth on health investment and health.41 Likewise, for the health stock, the
comparative dynamic effect of A0, keeping length of life T fixed, is obtained by taking the
derivative of equation (24) with respect to A0

∂

∂t

∂H(t)

∂A0

∣∣∣∣
T

=
α

1− α
I(t)α

πI(t)
× ∂πI(t)

∂A0

∣∣∣∣
T

− d(t)× ∂H(t)

∂A0

∣∣∣∣
T

. (28)

The LHS of Figure 3 shows the phase diagram for the motion paths of the variation
of the marginal cost of health investment ∂πI(t)/∂A0|T (y-axis) versus the variation of

40In other words, I assume diminishing returns to wealth, health, and longevity,

∂qA(t)

∂A(t)
=

∂2

∂A(t)2

∫ T∗

t

U(∗)e−βsds < 0,
∂qH(t)

∂H(t)
=

∂2

∂H(t)2

∫ T∗

t

U(∗)e−βsds < 0,

∂=(T )

∂T
=

∂2

∂T 2

∫ T∗

t

U(∗)e−βsds < 0,
∂qA(t)

∂H(t)
=

∂2

∂H(t)∂A(t)

∫ T∗

t

U(∗)e−βsds < 0,

where T ∗ denotes optimal length of life and U(∗) denotes the maximized utility function. Intuitively,
health is a resource and having more of it relaxes the dynamic constraint for health. But health also
relaxes the dynamic constraint for wealth: being in better health reduces the need for health investment
and health provides earnings. Thus health reduces the marginal value of health as well as wealth.

41In other words, the terms

1

qA(0)2
∂U

∂C

∂2U
∂C∂H

∂2U
∂H2

e−(β−δ)t × ∂qA(0)

∂A0

∣∣∣∣
T

, and
1

qA(0)

∂2U

∂H2

( ∂2U
∂C∂H

)2

∂2U
∂C2

e−(β−δ)t × ∂H(t)

∂A0

∣∣∣∣
T

,

are assumed to be small. The first term is the indirect effect of wealth on consumption and the effect that
consumption in turn has on the marginal utility of health, and the second term is the indirect effect of
wealth on health and the effect that health in turn has on consumption and consumption in turn on the
marginal utility of health.
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health ∂H(t)/∂A0|T (x-axis) with respect to initial wealth, for fixed T . By assumption
∂qA(0)/∂A0|T < 0, ∂2U/∂H2 < 0, and ∂2Y/∂H2 < 0, and we obtain the direction of
motion (indicated by the block arrows) in the four dynamic regions of the phase diagram,
defined by the null-clines. Since both initial health H(0) = H0 and end-of-life health
H(T ) = Hmin are fixed, it follows that ∂H(0)/∂A0|T = ∂H(T )/∂A0|T = 0. Thus, in the
phase diagram all admissible paths begin and end at the vertical axis.
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Figure 3: The LHS shows the phase diagram of the perturbation due to variation in initial wealth
δA0, for fixed T . The RHS shows the same phase diagram allowing length of life T to be free. The
four vertical dotted lines represent different values for the end point ∂H(T )/∂A0.

Consider a path starting at the vertical axis, between the horizontal axis and the
(∂/∂t) (∂πI(t)/∂A0)|T = 0 null-cline. This path starts with ∂πI(0)/∂A0|T > 0, and could
return to the vertical axis in finite time if it enters dynamic region IV at some point.
This path satisfies all conditions, and an example trajectory (a) is shown for illustrative
purposes.42 Thus (see trajectory a) wealth increases the marginal cost of health investment
∂πI(t)/∂A0|T > 0 initially, but decreases it ∂πI(t)/∂A0|T < 0 eventually. In a model with
a fixed life span T , health is higher at all ages, ∂H(t)/∂A0|T > 0 ∀t, except for t = 0
and t = T . Intuitively, because length of life T is fixed, any additional health investment
(higher marginal cost) has to be balanced by reduced investment (lower marginal cost) to
ensure that health reaches the minimum health level Hmin over the unchanged horizon T .

42More complicated paths are possible (as null clines shift with time) that may temporarily enter regions
I and/or II, but only those paths that start on the vertical axis above the horizontal axis and that end on
the vertical axis below the horizontal axis are admissible, leading to broadly similar patterns.
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Fixed length of life thus mutes the response to wealth.

Longevity Using the above results, it is possible to investigate whether life is extended
as a result of additional wealth. Taking into account that in the optimum the condition
=(T ) = 0 has to be satisfied (see 12), we have

∂T

∂A0
= − ∂=(T )

∂A0

∣∣∣∣
T

{
∂=(T )

∂T

∣∣∣∣
A0

}−1
, (29)

and, using the expression for the Hamiltonian (9) we obtain (see Appendix section G)

∂=(T )

∂A0

∣∣∣∣
T

=
∂qA(0)

∂A0

∣∣∣∣
T

e−rT
∂A(t)

∂t

∣∣∣∣
t=T

+

{
∂qA(0)

∂A0

∣∣∣∣
T

e−rTπI(T ) + qA(0)e−rT
∂πI(T )

∂A0

∣∣∣∣
T

}
∂H(t)

∂t

∣∣∣∣
t=T

, (30)

where I distinguish in notation between ∂f(t)/∂t|t=T , which represents the derivative with
respect to time t at time t = T , and ∂f(t)/∂T |t=T , which represents variation with respect
to the parameter T at time t = T .

Using (29), (30), and, by assumption, ∂=(T )/∂T |A0
< 0, wealth increases longevity

∂T/∂A0 > 0 if ∂=(T )/∂A0|T > 0. In (30), both ∂A(t)/∂t|t=T and ∂H(t)/∂t|t=T are
negative at the end of life since health approaches Hmin from above, and assets decline in
absence of a strong bequest motive. Since, by assumption, ∂qA(0)/∂A0|T < 0, a sufficient
requirement for ∂T/∂A0 > 0 is ∂πI(T )/∂A0|T ≤ 0. Indeed ∂πI(T )/∂A0|T ≤ 0 (see the
end point of trajectory a on the LHS of Figure 3), and thus life is extended ∂T/∂A0 > 0.

Free T Having established that wealthy individuals live longer, let’s consider the more
interesting case where length of life T is free. The coefficients in (27) and (28) for variation
in length of life T , holding initial wealth A0 constant, are identical to the coefficients for
variation in initial wealth A0, holding length of life T fixed. That is, we simply have to
replace the partial derivatives with their total derivatives in (27) and (28) to obtain the
total comparative dynamic effect for free T .43 As a result, the phase diagram for free T is
identical to that for fixed T (see the RHS of Figure 3). There is, however, one important
difference: while all admissible paths start at the vertical axis, ∂H(0)/∂A0 = 0, they
end to the right of the vertical axis, ∂H(T )/∂A0 > 0, and the end point ∂H(T )/∂A0 lies
further to the right for greater life extension ∂T/∂A0 (indicated by the four dotted vertical
lines in the figure; for proof see Appendix H). As the phase diagram shows, trajectories a,
b, c and d, corresponding to four different levels of ∂H(T )/∂A0, are feasible. Moving from
scenario d to c to b and finally to a, investment in health increases progressively and so
does life extension (the end point ∂H(T )/∂A0 lies furthest to the right for trajectory a).

43I.e. replace (∂/∂t)(∂πI(t)/∂A0)|T , (∂/∂t)(∂H(t)/∂A0)|T , ∂qA(0)/∂A0|T , ∂πI(t)/∂A0|T , and
∂H(t)/∂A0|T with (∂/∂t)(∂πI(t)/∂A0), (∂/∂t)(∂H(t)/∂A0), ∂qA(0)/∂A0, ∂πI(t)/∂A0, and ∂H(t)/∂A0.
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In all four scenarios individuals invest cumulatively more in health
∫ T
0

[∂πI(t)/∂A0] dt > 0 but
they may invest less at certain ages (for example in scenario d individuals invest less late
in life, compared to the unperturbed path). In a scenario where life extension is small,
health investment increases less rapidly for wealthy individuals (investment is initially
above and eventually beneath the unperturbed path, e.g., as in scenario d), whereas in a
scenario where life extension is large, health investment increases more rapidly for wealthy
individuals (health investment starts out higher and is increasingly higher at later ages,
compared to the unperturbed path). Further, wealthy individuals are healthier at all ages
(all paths lie to the right of the vertical axis).

Thus, additional wealth (positive δA0) induces individuals to invest more in health. As
a result, their health deteriorates slower and they live longer. This addresses the criticism
of Case and Deaton (2005) that the Grossman model does not predict differences in the
rate of aging between wealth groups.

3.2.2 Variation in permanent wages and education

Permanently higher wages and education operate in a similar manner to an increase
in wealth δA0, with some differences: (i) the wealth effect is muted by the increased
opportunity cost of time, (ii) permanent wages wE and education E also raise the
production benefit of health, and (iii) education raises the efficiency of health investment.
For details see Appendix I.

3.2.3 Variation in health

Fixed T The comparative dynamic effect of variation in initial health δH0 is obtained
by taking the derivative of (23) and (24) with respect to initial health H0 and keeping
first-order (direct) terms. The comparative dynamic relations follow simply from replacing
A0 with H0 in (27) and (28). As a result, since ∂qA(0)/∂H0|T < 0 by assumption,
the phase diagram for variation in initial health δH0 (Figure 4), is similar to the phase
diagram for variation in initial wealth δA0 (LHS of Figure 3). However, an important
difference with wealth is that any admissible path has to start at ∂H(t)/∂H0|T,t=0, which
for t = 0 is identical to 1. We don’t know a-priori where ∂H(t)/∂H0|T = 1 is located
with respect to the steady state and Figure 4 shows two possible cases. Trajectories a,
b and c are consistent with the begin and end conditions for the case where the starting
point ∂H(t)/∂H0|T = 1 is located to the left, and trajectories d and e for the case where
∂H(t)/∂H0|T = 1 is located to the right, of the steady state (vertical dashed lines).

Trajectories a, b, and d represent an initial increase, followed by a subsequent decrease,
in the marginal cost of health investment πI(t), with respect to the unperturbed path.
Thus early in life, greater initial health may increase the demand for health investment,
whereas later in life it decreases it. Trajectories c and e represent solutions where the
marginal cost of health investment is lower at all times. Here better health reduces
the demand for health investment at all times. Trajectories a through e all involve
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Figure 4: Phase diagram of the perturbation due to variation in initial health δH0, for fixed T .

cumulatively lower health investment
∫ T
0

[∂πI(t)/∂H0] dt < 0 as initially higher health δH0

requires less health investment over the life cycle in order for health to reach the minimum
health level Hmin within the same length of life T . However, because individuals start with
better initial health δH0 > 0, health is higher at all times (except for t = T ).44

Longevity The effect of variation in initial health δH0 on length of life T can be obtained
by following the same steps as in section 3.2.1. The result is identical to replacing A0 with
H0 in (29) and (30). By assumption, ∂=(T )/∂T |H0

< 0, and ∂qA(0)/∂H0|T < 0, so that
life is extended if ∂πI(T )/∂H0|T ≤ 0. Note that all admissible scenarios a through e, end
with ∂πI(T )/∂H0|T < 0. Thus, length of life is extended ∂T/∂H0 > 0.45

Free T Having established that length of life is extended, ∂T/∂H0 > 0, now consider
the case where T is free. Figure 5 presents the comparative dynamic results. The phase

44If health does not provide utility, the steady state is located at the origin. The admissible trajectory
is then characterized by lower health investment at all times (similar to trajectories c and e).

45If, however, ∂qA(0)/∂H0|T > 0, the (∂/∂t)(∂πI(t)/∂H0)|T null-cline shifts downward, crossing the
(∂/∂t)(∂H(t)/∂H0)|T null cline to the left of and below the origin. In this case, admissible trajectories
start with ∂πI(0)/∂H0|T < 0, and either end with ∂πI(T )/∂H0|T > 0, in which case life is not extended
but reduced ∂T/∂H0 < 0 as a result of greater health, or end with ∂πI(T )/∂H0|T < 0, in which case it
cannot be established that life is extended. I favor the scenario where poorer individuals derive greater
benefits from health, i.e. ∂qA(0)/∂H0|T < 0. It is consistent with empirical evidence that worse childhood
health is associated with shorter lives (e.g., Currie, 2009). Further the assumption has the natural intuitive
interpretation that health and wealth are substitutable in financing consumption (see footnote 40).
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diagram on the left shows feasible trajectories a through h for the case where the starting
point ∂H(t)/∂H0 = 1 is located to the left of the steady state, and the phase diagram
on the right shows feasible trajectories a through f for the case where the starting point
∂H(t)/∂H0 = 1 is located to the right of the steady state (dashed vertical lines in both
phase diagrams). The initial condition ∂H(t)/∂H0 = 1 for t = 0, and the end-condition
∂H(T )/∂H0 > 0, imply that all admissible paths start and end to the right of the vertical
axis. Analogous to the discussion in section 3.2.1 the end point ∂H(T )/∂H0 > 0, lies
further to the right in the phase diagram, the greater life is extended ∂T/∂H0. Three
example end values ∂H(T )/∂H0 are indicated by the dotted vertical lines in both diagrams.

While both phase diagrams are somewhat complicated, they show that for end points
∂H(T )/∂H0 that lie further to the right (greater degree of life extension), the deviation
in the marginal cost of health investment ∂πI(t)/∂H0 becomes more and more positive,
with some scenarios even allowing for the possibility that healthy individuals invest more
in health at every age. Whereas for end points ∂H(T )/∂H0 that lie more to the left
(smaller degree of life extension), the deviation in the marginal cost of health investment
∂πI(t)/∂H0 becomes more and more negative. These latter cases more closely resemble
the fixed T case. Further, individuals with greater endowed health are healthier at all
ages, ∂H(t)/∂H0 > 0, ∀t (all trajectories lie to the right of the vertical axis).
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Figure 5: Phase diagram of the perturbation due to variation in initial health δH0, for free T ,
with starting point, ∂H(t)/∂H0 = 1, located to the left (LHS) and right (RHS) of the steady state.

Thus, greater initial health potentially reduces the initial demand for health
investment, ∂I(0)/∂H0 < 0. Because one can start the optimization problem at any
age by redefining the initial conditions H0 and A0 for that age, this result holds for any
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age. Thus the theory can accommodate a negative relation between health and health
investment. This addresses the criticism by Wagstaff (1986a) and Zweifel and Breyer
(1997) that the Grossman model is unable to predict the observed strong negative relation
between health and the demand for medical care. As the previous discussions and Figure
5 suggest, a negative relationship between health and health investment is more likely for
a small degree of life extension afforded by additional health and for a small consumption
benefit (steady state close to the origin; see footnote 44).

3.3 Structural equations

Empirical tests of health-production models have thus far been based on structural-
and reduced-form equations derived under the assumption of a CRTS health-production
process.46 Because these structural- and reduced-form relations suffer from the issue of
the indeterminacy of health investment and are often based on the incorrect condition
(see sections 2.3 and 3.1.1), I derive in this section a structural relation for the DRTS
health-production process presented in this paper. The purpose of this analysis is to show
once more that the Grossman model is dynamic, that the demand for health investment
is plausibly decreasing in health, and to offer some guidance for testing the model.

3.3.1 Simple functional forms

Discrete time lends itself better to empirical analyses. Appendix sections B and C
present the discrete-time equivalent of the continuous-time formulation. In order to obtain
expressions suitable for empirical testing we also have to assume functional forms for model
functions and parameters that cannot be observed directly, such as the health-investment
production process It and the biological aging rate dt.

I specify the following constant relative risk aversion (CRRA) utility function:

U(Ct, Ht) =
1

1− ρ

(
CζtH

1−ζ
t

)1−ρ
, (31)

where ζ (0 ≤ ζ ≤ 1) is the relative “share” of consumption versus health and ρ (ρ > 0) the
coefficient of relative risk aversion. This functional form can account for the observation
that the marginal utility of consumption declines as health deteriorates (e.g., Finkelstein,
Luttmer and Notowidigdo, 2013) which would rule out strongly separable functional forms,
where the marginal utility of consumption is independent of health.

I make the usual assumption that sick time is a power law in health

st = Ω

(
Ht

Hmin

)−γ
, (32)

where γ > 0 so that sick time decreases with health. This choice of functional form has
the properties limHt→∞ st = 0 and limHt↓Hmin

st = Ω, where Ω is the total time budget as
in (59; the discrete-time equivalent of 4).

46See footnote 10.
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Using equation (61) we have:

∂Yt
∂Ht

≡ ϕHt = wtγΩHγ
minH

−(1+γ)
t ≡ wtΩ∗H−(1+γ)t . (33)

Investment in health It and consumption Ct are assumed to be produced by combining
own time and goods/services purchased in the market according to a Cobb-Douglas CRTS
production function (see equations 105 and 109).

Following Grossman (1972a, 1972b) I assume that the more educated are more efficient
consumers and producers of health investment

µIt = µI0e
ρIE , (34)

where E is the level of education and ρI is a constant.
Further, I assume a Mincer-type wage equation in which the more educated and the

more experienced earn higher wages (Mincer, 1974)

wt = wEe
ρwE+βxxt−βx2x

2
t , (35)

where education E is expressed in years of schooling, xt is years of working experience,
and ρw, βx and βx2 are constants, assumed to be positive.

Lastly, following Wagstaff (1986a) and Cropper (1981) I assume the biological aging
rate dt to be of the form

dt = d•e
βtt+βξξt , (36)

where d• ≡ d0e−βξξ0 and ξt is a vector of environmental variables (e.g., working and living
conditions, hazardous environment, etc) that affect the biological aging rate. The vector
ξt may include other exogenous variables that affect the biological aging rate, such as
education (Muurinen, 1982).

3.3.2 Structural relation between health and health investment

A structural relation for the demand for health investment goods and services mt (e.g.,
medical care) can be obtained from the first-order conditions for health investment (76)
and for consumption (78), using the functional relations defined in the previous section
3.3.1 (see Appendix J for details)

b1itm
1−α
it − (1− α)m1−α

it m̃it = b2itH
−1/χ
it + b3itH

−(1+γ)
it , (37)

where I have defined the following functions

b1it ≡
[
d•e

βtti+βξξit + δ − (1− αkI)p̃mit − αkIw̃it
]
, (38)

b2it ≡ b2∗
(
qA0i
)−1/ρχ

eαρIEip−(1−αkI)mit w
−[kC(1/ρχ−1)+αkI ]
it p

−(1−kC)(1/ρχ−1)
Xit

(
1 + βi
1 + δ

)−ti/ρχ
(39)

b3it ≡ b3∗e
αρIEip−(1−αkI)mit w1−αkI

it , (40)
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and the following constants

b2∗ ≡ [(1− ζ)Λ]1/χ αkαkII (1− kI)1−αkIµαI0
[
kkCC (1− kC)1−kC µCt

]1/ρχ−1
, (41)

b3∗ ≡ αkαkII (1− kI)1−αkIµαI0Ω∗, (42)

Λ ≡ ζ
1−ρ
ρ (ζ/1− ζ)1−χ , (43)

χ ≡ (1 + ρζ − ζ)/ρ, (44)

where the subscript i indexes the ith individual, and where the notation f̃t is used to
denote the relative change f̃t ≡ 1 − ft−1

ft
in a function ft. Further, I have assumed small

relative changes (much smaller than one) in the price of medical care p̃mit , wages w̃it and
the efficiency of the health investment process µ̃Iit and, for simplicity, assumed a constant
discount factor βt = β and constant rate of return to capital δt = δ.47

The structural form (37) of the first-order condition for health investment describes a
dynamic relationship between the demand for health investment goods / services mt (e.g.,
medical care), the relative change in the demand for health investment goods / services m̃t

and the health stock Ht. For slow changes in the demand for health investment goods /
services with time (small m̃t), the demand for health investment goods / services mt falls
with the level of health Ht. This is further reflected in the elasticity of health investment
goods / services with respect to health Ht, which, for small m̃t, is negative (and a function
of the health stock Ht)

σmt,Ht =
∂mt

∂Ht

Ht

mt
= − 1

1− α

 1
χb

2
tH
−1/χ
t + (1 + γ)b3tH

−(1+γ)
t

b2tH
−1/χ
t + b3tH

−(1+γ)
t

 , (45)

where I have suppressed the index i for the individual.48 This addresses the criticism by
Wagstaff (1986a) and Zweifel and Breyer (1997) that health-capital models are unable to
predict a negative relation between health and health investment.49 Appendix J provides
additional discussion of these relations.

In practice, estimating (37) is not straightforward. Galama et al. (2012) estimate,
after some simplifying assumptions, a linearized version of (37). They obtain a
significantly negative relation between measures of medical care and measures of health.
However, when controlling for the endogeneity of health, using childhood health and
parental smoking during childhood as instruments, the coefficients become statistically

47A similar expression for time inputs τIit can be obtained using (108). Further, one can substitute (35)
for the wage rate wit to obtain an expression in terms of years of schooling Ei and years of experience xit.

48For the pure investment (PI) model (∂U/∂H = 0) we have σPImt,Ht
= −(1+γ)/(1−α), and for the pure

consumption (PC) model (∂Y/∂H = 0) σPCmt,Ht
= −1/χ(1− α). Note, that in the pure investment model

health does not provide utility, ζ = 1 (see equation 31) and b2it = 0, whereas in the pure consumption
model health does not provide a production benefit, ϕHit = 0 and b3it = 0.

49Note, however, that the comparative dynamic analysis for health (section 3.2.3) also allows for the
possibility that health increases the demand for health investment.
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insignificant, bringing into question the robustness of prior estimates of the relation
between health investment and health from the literature.

A more promising approach may be to numerically solve and estimate the model using
dynamic programming techniques. Indeed, this appears to be the approach taken by the
recent literature (see references to such dynamic programming efforts in footnote 10).

3.4 Numerical simulations

In this section I present simulations of the model with a DRTS health-production process
and a simple step process. I first discuss the step process for fixed length of life (section
3.4.1). I then illustrate the properties of the model with numerical simulations accounting
for endogenous length of life (section 3.4.2). The purpose of these analyses is to provide
intuition into the dynamics of the model, and to corroborate results obtained from the
dynamic analyses in sections 3.1 and 3.2, namely: 1) that the model can replicate the
stylized fact that health investment increases with age, and 2) that length of life is finite,
even for a constant deterioration rate (addressing the criticism of Case and Deaton, 2005).

3.4.1 Step process and fixed length of life

We start with the initial condition for health H0. Initial consumption C0 then follows from
the first-order condition for consumption (78), which, for the assumed functional forms in
section 3.3.1, can be written as

Ct =

[
qA0
ζ
πCt

∏t
j=1(1 + βj)∏t
j=1(1 + δj)

]−1/ρχ
H

χ−1
χ

t , (46)

where πCt is given by (110). Initial consumption C0 is a function of initial health H0, the
price of goods and services pX0 , the wage rate w0 (the opportunity cost of not working)
and the marginal value of initial wealth qA0 . Next, the initial level of health investment
I0 follows from the initial marginal cost of health investment πI0 (see expressions 72 and
106). The initial level of health investment I0 is a function of the price of goods and
services pm0 , the wage rate w0, education E, and the initial marginal value of wealth qA0
and of health qH0 . Thus, given exogenous education, prices and wage rates, the initial level
of health investment I0 and the initial level of consumption C0 are functions of the as of
yet undetermined initial values of qA0 and qH0 .

Health in the next period H1 is determined by the dynamic equation (57). Assets
in the next period A1 follow from the initial condition for assets A0 and the dynamic
equation for assets (58). For the assumed functional forms in section 3.3.1 we have

At+1 = (1 + δt)At + wt
[
Ω− τ∗ItIt − τ

∗
CtCt − st

]
− pXtX∗t Ct − pmtm∗t It, (47)

where st, m
∗
t , τ

∗
It

, X∗t , τ∗Ct are defined in (32), (107), (108), (111) and (112).
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Consumption C1 follows from the first-order condition for consumption (46), health
investment I1 follows from the first-order condition for health investment (74), (75), or
(76), which for the assumed functional forms in section 3.3.1 can be expressed as

πIt =
1

1− dt

[
πIt−1(1 + δt)−

1− ζ
qA0

C1−ρχ
t H

ρ(χ−1)−1
t − wtΩ∗H−(1+γ)t

]
. (48)

Health H2 and assets A2 in the next period are determined by the dynamic equations
(57) and (47) and so on. The solutions for consumption Ct, health investment It, health
Ht, and wealth At, for every period t are functions of the initial marginal values of wealth
qA0 and health qH0 . In the final period, the end conditions for the final level of health
HT = Hmin and the final level of assets AT determine qA0 and qH0 .50 Section 3.4.2 details
how this is implemented.

As pointed out by Ehrlich and Chuma (1990), length of life T is exogenous (fixed)
in the absence of an additional (transversality) condition (12).51 In discrete time this
condition consists of maximizing the “indirect utility function” VT (63) with respect to
length of life T .

3.4.2 Simulations with endogenous longevity

In this section I simulate the model for a particular set of parameter values. The purpose
of this exercise is to illustrate some properties of the model. Other parameter choices are
possible and a full exploration of the model’s properties would require exploring a wide
range of parameter values. Ultimately one would like to estimate the model with panel
data to test its ability to describe human behavior. This is beyond the scope of this paper.

Figure 6 shows the results of model simulations using the step process and equations
presented in the above section 3.4.1. In the simulations I have used a period step size of
one tenth of a year and assumed annual wages of the form

wt = 10e{1.31383×10
−3[70(t−20)−(t−20)2]} $ (thousands), (49)

starting at age t = 20 when the individual begins work life until she retires at a fixed
retirement age R = 65. This Mincer-type wage equation starts with annual wages of
$ 10, 000 per year at age t = 20 and peaks at $ 50, 000 per year at age t = 55 after
which wages gradually decline till the age of retirement R = 65 (earnings are zero after
retirement). In addition I use the following parameters: α = 0.5, γ = 10 (sick time
increases significantly only upon approaching end of life, i.e., as Ht approaches Hmin),
H0 = 100, HT ≡ Hmin = 15, A0 = AT = 0 $ (thousands) (no bequests), Ω = 0.1 year (the
total time available in a period equals the time step size), kI = kC = 0 (health investment

50Alternatively one could start with the final period t = T − 1 and use recursive back substitution.
51Grossman (1998) and Ried (1998) have argued that length of life is determined in an iterative process

and that the condition that health at the end of life HT equal the minimum health stock Hmin is sufficient.
However, as the preceding discussion shows, the end conditions AT and HT are needed to determine the
co-state functions qA0 and qH0 for fixed T . Thus an additional condition is needed for optimal T .
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Figure 6: Health (H(t); top-left), assets (A(t); $ thousands; top-right), health investment
(I(t); center-left), consumption (C(t); center-right), healthy time (h(t); fraction of total time Ω;
bottom-left), annual earnings (Y (t); $ thousands per year; bottom-right)

It and consumption Ct consist of purchases in the market, not of own time inputs),52

pmt = 0.2 $ per medical good/service unit, pXt = 0.2 $ per consumption good/service
unit, µIt = 0.01, µCt = 1, ρ = 0.8, ζ = 0.95 (high relative “weight” of consumption versus
health in providing utility), a constant aging rate dt = d0 = 0.06 (per year), a constant
return to capital δt = δ0 = 0.03 (per year) and a constant subjective discount factor
βt = β0 = 0.03 (per year).

52This simplification helps avoid corner solutions in which the time budget constraint is not satisfied.
This is because for this choice healthy time ht = Ω − st is always positive after retirement, even as st
approaches Ω as Ht approaches Hmin. After retirement, income Yt and time spend working τwt are zero.
Further, for kI = kC = 0 no time is devoted to health investment, τIt = 0, or to consumption, τCt = 0.
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I start with the initial values for health H0 and assets A0 and employ the Nelder-Mead
method (also called the downhill simplex or amoeba method; Nelder and Mead, 1965) to
iteratively determine the initial marginal value of wealth qA0 and of health qH0 that satisfy
the end conditions AT and HT . I use the usual values αNM = 1, γNM = 2, ρNM = 0.5 and
σNM = 0.5 for the Nelder-Mead reflection, expansion, contraction and shrink coefficients,
respectively. Optimal length of life is determined by maximizing the “indirect utility
function” VT (63) with respect to length of life T . Solutions for which health drops below
Hmin are excluded (see footnote 14). I find T = 82.0 years.

Health Ht (top-left panel of Figure 6) gradually declines with age t and life ends at age
T = 82.0 years. Health deteriorates somewhat slower during the ages 50 to 65, coinciding
with increased levels of health investment It (center-left panel of Figure 6). The demand
for health investment consists of two components. The first is driven by the production
benefit of health and follows a hump shaped pattern similar to the earnings profile Yt
(bottom-right panel of Figure 6). Health investment improves health, reduces sick time,
and thereby improves earnings Yt. The second is driven by the desire of individuals to be
healthy (consumption benefit) and to extend life. This component gradually increases with
age. Thus the simulation corroborates the dynamic analysis, suggesting that solutions are
feasible in which health investment increases near the end of life.

At a price pmt = 0.2 $ per medical good/services unit her expenditures on health
investment goods/services pmtmt peak at about $ 1,800 per year at around age 55. The
fact that such humped-shape profiles are generally not observed in medical expenditure
data sets, at least not as sizeable as the simulation shows, suggests that the production
benefit of health (compared to the consumption benefit of health) may be smaller in real
life than is simulated.

The individual’s assets At (top-right panel in Figure 6) initially deplete till about age
50 as she borrows to fund her consumption Ct (center-right panel of Figure 6) and health
investment It needs. She builds up savings between ages 50 and the age of retirement (65)
and depletes these savings by end of life. Consumption is relatively constant with age. At
a price pXt = 0.2 $ per consumption good/service unit her expenditures on consumption
goods/services pXtXt are about $ 28,000 per year.

Healthy time ht (bottom-left panel of Figure 6) starts to decline rapidly around the
age of retirement. While some of this can be explained by a drop in health investment It
at retirement, this is mostly due to the steep functional relation assumed between health
Ht and sick time st (equation 32 for γ = 10).

The simulations further show that solutions are feasible for which the biological aging
rate is constant, despite the common perception that the biological aging rate needs to
increase with age in order to ensure that health falls with age and life is finite (e.g.,
Grossman, 1972a, 2000; Ehrlich and Chuma, 1990; Case and Deaton, 2005). This
addresses the criticism that if the rate of biological deterioration is constant, people will
life infinitely long lives (Case and Deaton, 2005).
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4 Discussion and conclusions

The Grossman model is the canonical theory of the demand for health and health
investment. This paper shows that much of the criticism directed at the model is
not the result of a flawed model but of an unfortunate and unnecessary choice for
the functional form (linear in investment) of the health-production process, and of an
incorrect interpretation of the equilibrium condition for health. The linear relation
between the production of health and health investment leads to an indeterminacy of
health investment. Lacking ability to derive an expression for investment, the model
essentially breaks down: without investment it is not possible to derive the paths of health,
wealth, and consumption. In addition, I show that the “equilibrium” condition for health
is instead an optimality condition for health investment. This condition should be used
to determine health investment and the dynamic equation for health should be used to
determine health. Employing a diminishing returns to scale production function, adopting
the reinterpretation of the equilibrium condition, modeling endogenous longevity, and
analyzing the resulting dynamics, the theory is capable of addressing the major criticisms
leveled at the Grossman model.

This paper also presents the first detailed comparative dynamic analyses of the
Grossman model. These show that high SES individuals invest more in health, and as
a result their health declines more slowly and they live longer. As the health of lower
SES individuals deteriorates faster, they start to invest more in health (if the demand for
investment is higher for those in poor health). This, and mortality selection, as those in
poor health live shorter lives, leading to an apparently healthier lower SES population in
old age, may explain the narrowing of the SES-health gradient around ages 50 to 60. Thus
the model can reproduce the essential features of the SES-health gradient. Comparative
dynamic analyses also highlight an important role for life extension. For example, health
investment is higher and increases less rapidly with age for higher SES individuals if SES
enables moderate life extension (flatter investment profile) and more rapidly with age if
SES enables substantial life extension (steeper investment profile).

These analyses support the Grossman model’s canonical status, showing that it
provides a remarkably successful foundation for understanding decisions regarding health.
Yet, further development is required in at least three directions. First, medical care
explains only a relatively small part of the SES-health gradient, suggesting a role for a
more comprehensive theory of health production that includes additional health behaviors.
Second, a childhood phase needs to be incorporated, in recognition of the importance of
childhood endowments and investments in the determination of later-life socioeconomic
and health outcomes. Third, a unified theory of joint investment in skill (or human)
capital and in health capital could provide a basis for a theory of the relationship between
education and health.

33



References
Arrow, K. J. (1968), “Optimal capital policy with irreversible investment”. In: Value,
capital, and growth: Papers in Honour of Sir John Hicks, J.N. Wolfe (editor), Edinburgh:
Edinburgh University Press, pp. 1-20.

Bolin, K., Jacobson, L. and Lindgren, B. (2001), “The family as the producer of health -
When spouses are Nash bargainers”, Journal of Health Economics, 20: pp. 349-362.

Bolin, K., Jacobson, L. and Lindgren, B. (2002a), “Employer investments in employee
health – implications for the family as health producer”, Journal of Health Economics,
21: pp. 563-583.

Bolin, K., Jacobson, L. and Lindgren, B. (2002b), “The family as the health producer –
When spouses act strategically”, Journal of Health Economics, 21: pp. 475-495.

Bolin, K., Lindgren, B., Lindstrom, M., and Nystedt, P. (2003), “Investments in social
capital – implications of social interactions for the production of health”, Social Science
and Medicine, 56(12): pp. 2379-2390.

Campbell, F., Conti, G., Heckman, J. J., Moon, S. H., Pinto, R., Pungello, E., and
Pan, Y. (2014), “Early childhood investments substantially boost adult health”, Science,
343(6178): pp. 1478-1485.

Caputo, M.R. (2005), Foundations of Dynamic Economic Analysis, Cambridge University
Press.

Case, A. and Deaton, A. (2005), “Broken down by work and sex: how our health
declines”, in: David A. Wise (ed.), Analyses in the Economics of Aging, The University
of Chicago Press, Chicago, pp. 185-212.

Contoyannis, P. and Rice, N. (2001), “The impact of health on wages: evidence from the
British Household Panel Survey”, Empirical Economics, 26: pp. 599-622.

Contoyannis, P., Jones, A.M. and Rice, N. (2004), “The dynamics of health in the British
Household Panel Survey”, Journal of Applied Econometrics, 19(4): pp. 473-503.

Cropper, M.L. (1977), “Health, investment in health, and occupational choice”, Journal
of Political Economy, 85: pp. 1273-1294.

Cropper, M.L. (1981), “Measuring the benefits from reduced morbidity”, The American
Economic Review, Papers and Proceedings of the Ninety-Third Annual Meeting of the
American Economic Association, 71(2): pp. 235-240.

34



Currie, J. and Madrian, B.C. (1999), “Health, health insurance and the labour market”,
In: Ashenfelter O, Card, D. (eds.), Handbook of Labour Economics, 3: pp. 3309-3415,
Amsterdam: Elsevier Science B.V.

Currie, J. (2009). “Healthy, wealthy, and wise: Socioeconomic status, poor health in
childhood, and human capital development”, Journal of Economic Literature 47(1): pp.
87-122.

Currie, J., and Almond, D. (2011). “Human capital development before age five”,
Handbook of labor economics, 4: pp. 1314-1486.

Cutler, D.M., Lleras-Muney, A. and Vogl, T. (2011), “Socioeconomic status and health:
dimensions and mechanisms”, Oxford Handbook of Health Economics.

Dustmann, C., and Windmeijer, F. (2000), “Wages and the demand for health – A life
cycle analysis”, IZA Discussion Paper 171, Germany.

Eisenring, C. (1999), “Comparative dynamics in a health investment model”, Journal of
Health Economics, 18(5): pp. 655-660.

Ehrlich, I. and Chuma, H. (1990), “A Model of the demand for longevity and the value
of life extension”, Journal of Political Economy, 98(4): pp. 761-782.

Ehrlich, I. (2000), “Uncertain lifetime, life protection, and the value of life saving”,
Journal of Health Economics, 19(3): pp. 341-367.

Ehrlich, I. and Yin, Y. (2005), “Explaining diversities in age-specific life expectancies and
values of life saving: a numerical analysis”, The Journal of Risk and Uncertainty, 31(2):
pp. 129-162.

Erbsland, M., Ried, W. and Ulrich, V. (2002), “Health, health care, and the environment:
econometric evidence from German micro data”, In: Econometric Analysis of Health
Data, John Wiley & Sons, Ltd, pp. 25-36.

Finkelstein, A., Luttmer, E. F. P., Notowidigdo, M. J. (2013), “What good is wealth
without health? The effect of health on the marginal utility of consumption”, Journal of
the European Economic Association, 11: pp. 221-258.

Fonseca, R., Michaud, P.-C, Kapteyn, A., and Galama, T. J. (2013), “Accounting for rise
of health spending and longevity”, IZA Discussion Paper, 7622.

35



Galama, T.J. and Kapteyn, A. (2011), “Grossman’s missing health threshold”, Journal
of Health Economics, 30(5): pp. 1044-1056.

Galama, T. J., Hullegie, P., Meijer, E., and Outcault, S. (2012), “Is there empirical
evidence for decreasing returns to scale in a health capital model?”, Health Economics,
21(9): pp. 1080-1100.

Galama, T.J., Kapteyn, A., Fonseca, F., Michaud, P.C. (2013), “A health production
model with endogenous retirement”, Health Economics, 22: pp. 883-902.

Gerdtham, U. G., and Johannesson, M. (1999), “New estimates of the demand for health:
Results based on a categorical health measure and Swedish micro data.” Social Science
and Medicine, 49: pp. 1325-1332.

Gerdtham, U. G., Johannesson, M., Lundberg, L., and Isacson, D. (1999), “The demand
for health: Results from new measures of health capital.” European Journal of Political
Economy, 15: pp. 501-521.

Gilleskie, D. (1998), “A dynamic stochastic model of medical care use and work absence.”
Econometrica, 66(1): pp. 1-45.

Gilleskie, D. (2010), “Work absences and doctor visits during an illness episode: The
differential role of preferences, production, and policies among men and women.” Journal
of Econometrics, 156(1): pp. 148-163.

Grossman, M. (1972a), “The Demand for health - A theoretical and empirical
investigation”, New York: National Bureau of Economic Research.

Grossman, M. (1972b), “On the concept of health capital and the demand for health”,
Journal of Political Economy, 80(2): pp. 223-255.

Grossman, M. (1998), “On optimal length of life”, Journal of Health Economics, 17: pp.
499-509.

Grossman, M. (2000), “The human capital model” In: Culyer and J. P. Newhouse (Eds.),
Handbook of Health Economics, 1, pp. 347-408. Amsterdam, The Netherlands: Elsevier
Science.

Heckman, J.J. (2007), “The economics, technology, and neuroscience of human capability
formation”, Proceedings of the national Academy of Sciences, 104(33): pp. 13250-13255.

Hugonnier, J., Pelgrin, F., and St-Amour, P. (2013), “Health and (other) asset holdings.”

36



Review of Economic Studies, 80(2): pp. 663-710.

Jorgenson, D. W. (1963), “Capital theory and investment behavior.” The American
Economic Review, pp. 247-259.

Jorgenson, D. (1967), “The theory of investment behavior.” In Determinants of investment
behavior, pp. 129-188, NBER.

Kaestner, R. (2013), “The Grossman model after 40 years: a reply to Peter Zweifel.”
European Journal of Health Economics, 14: pp. 357-360.

Kaya, C. Y., Lucas, S. K., and Simakov, S. T. (2004), “Computations for bang-bang
constrained optimal control using a mathematical programming formulation”, Optimal
Control Applications and Methods, 25(6): pp. 295-308.

Khwaja, A. (2010), “Estimating willingness to pay for Medicare using a dynamic life-cycle
model of demand for health insurance”, Journal of Econometrics, 156(1): pp. 130-147.

Kirk, D. (1970), Optimal control theory: an introduction, Prentice-Hall.

Laporte, A. (2014), “Should the Grossman model retain its iconic status in Health
Economics?”, Canadian Centre for Health Economics Working Paper 2014-04.

Leu, R.E. and Doppman, R.J. (1986), “Gesundheitszustandsmessung und nachfrage nach
gesundheitsleistungen”, In: Wille, E. (Hrsg.), Informations- und planungsprobleme in
offentlichen aufgabenbereichen, Frankfurt am Main/Bern/New York: Lang 1986, pp. 1-90.

Leu, R.E. and Gerfin, M. (1992), “Die nachfrage nach gesundheit - ein empirisher test des
Grossman-modells (Demand for health - an empirical test of the Grossman model)”, In:
Oberender, P. (Ed.), Steuerungsprobleme im gesundheitswesen, Baden-Baden: Nomos,
pp. 61-78.

Liljas, B. (1998), “The demand for health with uncertainty and insurance”, Journal of
Health Economics, 17(2): pp. 153-170.

Mincer, J.A. (1974), “Schooling, experience, and earnings”, Columbia University Press.

Muurinen, J-M. (1982), “Demand for health: a generalized Grossman model”, Journal of
Health Economics, 1: pp. 5-28.

Muurinen, J-M., and Le Grand, J. (1985), “The Economic analysis of inequalities in
health”, Social Science and Medicine, 20(10): pp. 1029-1035.

37



Nelder, J.A. and Mead, R. (1965), “A simplex method for function minimization”,
Computer Journal, 7: pp. 308–313.

Nocera, S. and Zweifel, P. (1998), “The demand for health: an empirical test of the
Grossman model using panel data”, In: Zweifel, P. (Ed.), Health, the medical profession
and regulation, Kluwer academic publishers, Boston/Dordrecht/London, pp. 35-49.

Oniki, H. (1973), “Comparative dynamics (sensitivity analysis) in optimal control
theory”, Journal of Economic Theory, 6: pp. 265–283.

Pearson, T., Russell, J., Campbell, M. J., and Barker, M. E. (2005), “Do ’food deserts’
influence fruit and vegetable consumption?” A cross-sectional study.” Appetite, 45(2),
195-197.

Ried, W. (1996), “Willingness to pay and cost of illness for changes in health capital
depreciation”, Health Economics, 5: pp. 447-468.

Ried, W. (1998), “Comparative dynamic analysis of the full Grossman model”, Journal
of Health Economics, 17: pp. 383-425.

Scholz, J. K., and Seshadri, A. (2012), “The interplay of wealth, retirement decisions.
Policy and economic shocks.” Michigan Retirement Research Center Research Paper No.
WP, 2012-271.

Seierstad, A. and Sydsaeter, K. (1977), “Sufficient conditions in optimal control theory”,
International Economic Review, 18(2): pp. 367-391.

Seierstad, A. and K. Sydsaeter (1987), “Optimal control theory with economic
applications”, In: Bliss, C.J. and Intriligator, M.D. (Eds), Advanced Textbooks in
Economics, Volume 24, Elsevier, North Holland.

Serdula, M. K., Gillespie, C., Kettel-Khan, L., Farris, R., Seymour, J., and Denny, C.
(2004), “Trends in fruit and vegetable consumption among adults in the United States:
behavioral risk factor surveillance system, 1994-2000.” American Journal of Public
Health, 94(6): pp. 1014-1018.

Strulik, H. (2014), “A closed-form solution for the health capital model”, CEGE
Discussion Papers, 222.

Sydsaeter, K., Strom, A. and Berck, P. (2005), “Economists’ mathematical manual”,
ISBN-10 3-540-26088-9, 4th ed., Springer Berlin, Heidelberg, New York.

38



Usher, D. (1975), “Comments on the correlation between health and schooling”, In: N.E.
Terleckyj, ed., Household Production and Consumption (Columbia University Press for
the National Bureau of Economic Research, New York), pp. 212-220.

Van de Ven, W. and van der Gaag, J. (1982), “Health as an unobservable: A MIMIC-model
of the demand for health care”, Journal of Health Economics, 1: pp. 157-183.

Van Doorslaer, E.K. (1987), “Health, knowledge and the demand for medical care”,
Assen, 171, ISBN 90-232-2335-7.

Van Doorslaer, E.K., Van Kippersluis, H., O’Donnell, O., Van Ourti, T. (2008),
“Socioeconomic differences in health over the life cycle: evidence and explanations”,
Netspar Panel paper prepared for the Netspar Panel Day 16 October, 2008, Tilburg.

Wagstaff, A. (1986a), “The demand for health: some new empirical evidence”, Journal of
Health Economics, 5: pp. 195-233.

Wagstaff, A. (1986b), “The demand for health: theory and applications”, Journal of
Epidemiology and Community Health, 40: pp. 1-11

Wagstaff, A. (1993), “The demand for health: an empirical reformulation of the Grossman
model”, Health Economics 2: pp. 189-198.

Yogo, M. (2009), “Portfolio choice in retirement: Health risk and the demand for
annuities, housing, and risky assets.” PARC Working Papers, Population Aging Research
Center.

Zweifel, P. and Breyer, F. (1997), Health Economics, Oxford University Press, New York.

Zweifel, P., Felder, S., and Meiers, M. (1999), “Ageing of population and health care
expenditures: a red herring? ”, Health Economics, 8(6): pp. 485-496.

Zweifel, P. (2012), “The Grossman model after 40 years.” European Journal of Health
Economics, 13: pp. 677-682.

39



A First-order conditions: continuous time

The first-order necessary conditions for the optimal control problem, consisting of
maximizing the objective function (1) with respect to the control functions X(t), τC(t),
m(t), and τI(t), subject to the constraints (2, 3 and 4) and begin and end conditions,
follow from Pontryagin’s maximum principle (e.g., Caputo, 2005). The Hamiltonian is
given by (9). For the co-state variable qA(t) associated with assets we have

∂qA
∂t

= −∂=
∂A

= −qA(t)δ ⇔

qA(t) = qA(0)e−δt. (50)

The co-state variable qH(t) associated with health capital follows from

∂qH
∂t

= − ∂=
∂H

= qH(t)d(t)− ∂U

∂H
e−βt − qA(t)

∂Y

∂H
. (51)

The first-order condition for investment in health (13) follows from optimizing with respect
to health investment goods and services m(t) and time inputs τI(t):

∂=
∂m

= 0⇔ qH(t)
α

I(t)1−α
∂I

∂m
− qA(t)pm(t) = 0, (52)

∂=
∂τI

= 0⇔ qH(t)
α

I(t)1−α
∂I

∂τI
− qA(t)w(t) = 0. (53)

The first-order condition for consumption (19) follows from optimizing with respect to
consumption goods and services X(t) and time inputs τC(t):

∂=
∂X

= 0⇔ ∂U

∂C

∂C

∂X
e−βt − qA(t)pX(t) = 0, (54)

∂=
∂τC

= 0⇔ ∂U

∂C

∂C

∂τC
e−βt − qA(t)w(t) = 0. (55)

B Model formulation: discrete time

Using discrete time optimal control (e.g., Sydsaeter, Strom and Berck, 2005) the problem
can be stated as follows.53 Individuals maximize the life-time utility function

T−1∑
t=0

U(Ct, Ht)∏t
k=1(1 + βk)

, (56)

53Notation for the discrete time version of the model follows that of the continuous time version, with
time replaced by an index. For example, A(t) becomes At.
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where individuals live for T (endogenous) periods, βk is a subjective discount factor and
individuals derive utility U(Ct, Ht) from consumption Ct and from health Ht.

The objective function (56) is maximized subject to the dynamic constraints:

Ht+1 = f(It) + (1− dt)Ht, (57)

At+1 = (1 + δt)At + Y (Ht)− pXtXt − pmtmt, (58)

the total time budget Ωt

Ωt = τwt + τIt + τCt + s(Ht), (59)

and initial and end conditions: H0, HT , A0 and AT are given. Individuals live for T
periods and die at the end of period T − 1. Life cannot be sustained below a minimum
health level Hmin, and the individual dies when HT = Hmin.

For simplicity I assume
f(It) = Iαt , (60)

where 0 < α < 1 (DRTS).
Income Y (Ht) equals the wage rate wt times the amount of time spent working τwt ,

Y (Ht) = wt [Ωt − τIt − τCt − s(Ht)] . (61)

Thus, we have the following optimal control problem: the objective function (56) is
maximized with respect to the control functions Xt, τCt , mt and τIt and subject to the
constraints (57, 58 and 59). The Hamiltonian of this problem is:

=t =
U(Ct, Ht)∏t
k=1(1 + βk)

+ qHt Ht+1 + qAt At+1, t = 0, . . . T − 1 (62)

where qHt is the adjoint variable associated with the dynamic equation (57) for the state
variable health Ht and qAt is the adjoint variable associated with the dynamic equation
(58) for the state variable assets At.

The optimal control problem presented so far is formulated for a fixed length of life T
(see, e.g., Seierstad and Sydsaeter, 1977, 1987; Kirk, 1970; see also section 3.4.1). To allow
for differential longevity one needs to optimize over all possible lengths of life T . One way
to achieve this is by first solving the optimal control problem conditional on length of life
T (i.e., for a fixed exogenous T ), inserting the optimal solutions for consumption C∗t and
health H∗t (denoted by ∗) into the “indirect utility function”

VT ≡
T−1∑
t=0

U(C∗t , H
∗
t )∏t

k=1(1 + βk)
, (63)

and maximizing VT with respect to T .54

54This is mathematically equivalent to the condition utilized by Ehrlich and Chuma (1990) (in continuous
time) that the Hamiltonian equal zero at the end of life =(T ) = 0 (see 12).
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C First-order conditions: discrete time

Associated with the Hamiltonian (equation 62) we have the following conditions:

qAt−1 =
∂=t
∂At

⇒

qAt−1 = (1 + δt)q
A
t ⇔

qAt =
qA0∏t

k=1(1 + δk)
, (64)

qHt−1 =
∂=t
∂Ht

⇒

qHt−1 = qHt (1− dt) +
∂U(Ct, Ht)/∂Ht∏t

k=1(1 + βk)
+ qA0

∂Y (Ht)/∂Ht∏t
k=1(1 + δk)

⇔ (65)

qHt = −
t∑
i=1

[
∂U(Ci, Hi)/∂Hi∏i

j=1(1 + βj)
+ qA0

∂Y (Hi)/∂Hi∏i
j=1(1 + δj)

]
1∏t

k=i(1− dk)

+
qH0∏t

k=1(1− dk)
(66)

=
T∑

i=t+1

[
∂U(Ci, Hi)/∂Hi∏i

j=1(1 + βj)
+ qA0

∂Y (Hi)/∂Hi∏i
j=1(1 + δj)

]
i−1∏

k=t+1

(1− dk)

+ qHT

T∏
k=t+1

(1− dk) (67)

∂=t
∂Xt

= 0⇒

∂U(Ct, Ht)

∂Ct
= qA0

pXt
∂Ct/∂Xt

∏t
j=1(1 + βj)∏t
j=1(1 + δj)

≡ qA0 πCt

∏t
j=1(1 + βj)∏t
j=1(1 + δj)

, (68)

∂=t
∂τCt

= 0⇒

∂U(Ct, Ht)

∂Ct
= qA0

wt
∂Ct/∂τCt

∏t
j=1(1 + βj)∏t
j=1(1 + δj)

≡ qA0 πCt

∏t
j=1(1 + βj)∏t
j=1(1 + δj)

, (69)
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∂=t
∂mt

= 0⇒

qHt = qA0

{
pmtI

1−α
t

α[∂It/∂mt]

}
1∏t

j=1(1 + δj)

≡ qA0 πIt
1∏t

j=1(1 + δj)
, (70)

∂=t
∂τIt

= 0⇒

qHt = qA0

{
wtI

1−α
t

α[∂It/∂τIt ]

}
1∏t

j=1(1 + δj)

≡ qA0 πIt
1∏t

j=1(1 + δj)
, (71)

where I have used the following definitions

k−1∑
k

(•) ≡ 0,

k−1∏
k

(•) ≡ 1.

Combining (70) and (71) we obtain the first-order condition for health investment

πIt =
qHt
qAt
, (72)

where πIt is the marginal cost of health investment It

πIt ≡
pmtI

1−α
t

α[∂It/∂mt]
=

wtI
1−α
t

α[∂It/∂τIt ]
. (73)

Using (64), (66), and (72), we obtain alternative expressions for the first-order condition
for health investment It, with the initial point t = 0 as point of reference

πIt∏t
k=1(1 + δk)

= −
t∑
i=1

[
∂U(Ci, Hi)/∂Hi

qA0
∏i
j=1(1 + βj)

+
∂Y (Hi)/∂Hi∏i
j=1(1 + δj)

]
1∏t

k=i(1− dk)

+
πI0∏t

k=1(1− dk)
, (74)

or with the final period T − 1 as point of reference

πIt∏t
k=1(1 + δk)

=

T−1∑
i=t+1

[
∂U(Ci, Hi)/∂Hi

qA0
∏i
j=1(1 + βj)

+
∂Y (Hi)/∂Hi∏i
j=1(1 + δj)

]
i−1∏

k=t+1

(1− dk)

+
πIT−1

∏T−1
k=t+1(1− dk)∏T−1

k=1 (1 + δk)
. (75)
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Using either (74) or (75) and taking the difference between period t and t−1 we obtain
the following expression

σHt =
1

qA0

∂U(Ct, Ht)

∂Ht

∏t
j=1(1 + δj)∏t
j=1(1 + βj)

+
∂Y (Ht)

∂Ht
, (76)

where σHt is the user cost of health capital at the margin

σHt ≡ πIt(dt + δt)−∆πIt(1 + δt), (77)

and ∆πIt ≡ πIt − πIt−1 .
Combining (68) and (69) we obtain the first-order condition for consumption Ct

∂U(Ct, Ht)

∂Ct
= qA0 πCt

∏t
j=1(1 + βj)∏t
j=1(1 + δj)

, (78)

where πCt is the marginal cost of consumption Ct

πCt ≡
pXt

∂Ct/∂Xt
=

wt
∂Ct/∂τCt

. (79)

The first-order condition (72) (or the alternative forms 74, 75 and 76) determines the
optimal solution for the control function health investment It. The first-order condition
(78) determines the optimal solution for the control function consumption Ct. The
solutions for the state functions health Ht and assets At then follow from the dynamic
equations (57) and (58). Length of life T is determined by maximizing the indirect utility
function VT (see 63) with respect to T .

D Mathematical equivalency of first-order conditions

Using (50), integrating the dynamic co-state equation for the marginal value of health
qH(t) (51), and inserting the expressions in (13) we obtain the alternative expressions (15)
or (16) for the first-order condition for health investment. Naturally, one can also perform
the reverse step. Thus,

(13)⇔ (15), (80)

(13)⇔ (16). (81)

Using the Leibniz integral rule to differentiate the first-order condition for health
investment (15) or the alternative expression (16) with respect to t one obtains (17).
In other words

(15)⇒ (17), (82)

(16)⇒ (17). (83)
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Conversely, one can rewrite (17) as a first-order differential equation in πI(t). which
can be integrated to provide

πI(t) = πI(t
′)e

∫ t
t′ [d(u)+δ]du

−
∫ t

t′

[
1

qA(0)

∂U

∂H
e−[β−δ]s +

∂Y

∂H

]
e
∫ t
s [d(u)+δ]duds. (84)

For t′ = 0 we obtain (15) and for t′ = T we obtain (16). Thus we have

(15)⇐ (17), (85)

(16)⇐ (17). (86)

Naturally, the equivalency of the first-order conditions, established above for
continuous time, is also true in the discrete time formulation. From (64), (66), and (72),
one obtains (74) or (75), and one can also make the reverse step. Taking the difference
between period t and t−1 (analogous to differentiating with respect to time in continuous
time) of either expression (74) or (75) one arrives at (76). And, using recursive backward
or forward substitution of relation (76) one arrives at (74) or (75).

E Indeterminacy of health investment

One can also establish the indeterminacy of health investment for CRTS by considering
the alternative expression for the first-order condition for health investment (15). This
condition equates the current marginal cost of investment in health πI(t) (LHS) with a
function of the current and all past values of the marginal utility of health ∂U(s)/∂H(s)
and of the marginal production benefit of health ∂Y (s)/∂H(s) (0 ≤ s ≤ t) (RHS). The
LHS of (15) is not a function of health investment as the marginal cost of health investment
πI(t) is independent of the level of investment for a CRTS health-production process. The
RHS of (15) is also not a function of current investment I(t) because the marginal utility
of health ∂U(s)/∂H(s) and the marginal production benefit of health ∂Y (s)/∂H(s) are
functions of the health stock H(s) (0 ≤ s ≤ t) which in turn is a function of past but
not current health investment I(s) (s < t).55 Since the consumption qA(0)−1∂U/∂H
and production ∂Y/∂H benefits of health are independent of the level of current health

55This can be seen as follows. The evolution of the health stock H(t) is determined by the dynamic
equation (2) which can be written (using 5) as

H(t) = H(0)e−
∫ t
0 d(u)du +

∫ t

0

I(s)αe−
∫ t
s d(u)duds. (87)

Health H(t) is a function of past health investment I(s) but not of current health investment I(t)
(0 ≤ s < t). That health is not a function of current investment is clear from the formulation of the
model, where past but not current investment contributes to current health. In continuous time this
means that the domain of s in (87) does not include the end point t: s ∈ [0, t). In discrete time it is easier
to see this. The evolution of the health stock Ht is determined by the dynamic equation (57) which can
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investment I(t), the first-order condition (15) is not a function of current health investment
I(t) and the level of health investment is not determined.56

Using similar reasoning one can also proof the indeterminacy of health investment
using the alternative conditions (16) and (17).

F Repeated bang-bang behavior

It is of interest to see if we can somehow recover health investment from the first-order
condition for health investment (13) for the case of CRTS (α = 1). To this end,
differentiate both sides of (13) separately as many times as needed till health investment
I(t) appears. After differentiating the condition twice it is possible to obtain an expression
for the level of health investment I(t)# for which the (now) twice-differentiated relation
holds (i.e. both sides equilibrate)

I(t)# = d(t)H(t) + φ(t)

{
∂2πI
∂t2

− qh/a(t)
∂d

∂t
−
∂qh/a(t)

∂t
[d(t) + δ]

}
+ φ(t)

{
1

qA(0)

∂2U
∂C∂H
∂2U
∂C2

e−(β−δ)t
∂U

∂C

[
∂πC
∂t

πC(t)
− (β − δ)

]}

− φ(t)

{
∂w

∂t

∂s

∂H
+ (β − δ) 1

qA(0)

∂U

∂H
e−(β−δ)t

}
(89)

be written (using 60) as

Ht = H0

t−1∏
j=0

(1− dj) +

t−1∑
j=0

Iαj

t−1∏
i=j+1

(1− di). (88)

In words, health Ht is a function of past Ij but not of current health investment It (since j < t).
56Grossman (2000) has questioned the indeterminacy of health investment, noting (in a discrete time

setting) that the first-order condition for health investment (75; equivalent to 16 in continuous time)
equates the current marginal cost of investment in health πIt (LHS) with a function of all future values
of the marginal utility of health ∂Us/∂Hs and of the marginal production benefit of health ∂Ys/∂Hs
(t < s ≤ T − 1) (RHS). These in turn are functions of health and health is a function of all past values
of health investment Is (0 ≤ s < t; see equation 88; equivalent to 87 in continuous time). Thus the
RHS of the first-order condition for health investment (75) is a function of current health investment It
(and, in fact, all future and all past values as well) and hence a solution for health investment It ought
to exist. This apparent discrepancy can be reconciled by noting that implicit in the first-order condition
for health investment (75) is the use of the final period t = T − 1 as the point of reference, while the
relation (88) for the health stock uses the initial period t = 0 as the point of reference. Consistently
using the initial period t = 0 as the point of reference, i.e., using the form (74) instead of (75) for the
first-order condition for health investment, one finds that the RHS of (74) is not a function of current
investment as the health stock is a function of past but not current health investment Is (s < t). Likewise,
consistently using the final period t = T as the point of reference, i.e., using the alternative expression
Ht = HT /[

∏T−1
i=t (1−di)]−

∑T−1
j=t I

α
j /[
∏j
i=t(1−di)] and comparing this with the first-order condition (75)

one finds that the first-order condition is independent of current health investment It.
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where

φ(t) ≡

w(t)
∂2s

∂H2
+


(

∂2U
∂C∂H

)2
∂2U
∂C2

− ∂2U

∂H2

 1

qA(0)
e−(β−δ)t


−1

, (90)

∂qh/a

∂t
≡ qh/a(t)[d(t) + δ]− 1

qA(0)

∂U

∂H
e−(β−δ)t − ∂Y

∂H
, (91)

and

qh/a(t) ≡
qH(t)

qA(t)
. (92)

Integrating (89) twice one finds that for this unique level of investment I(t)# the
condition πI(t) = qh/a(t) + K1 + K2t holds, i.e. unless K1 + K2t = 0, the first-order
condition for health investment (13) does not hold.57 Once more we cannot determine the
level of health investment as I(t)# is not consistent with (13). By definition, however,
(13) holds for H∗(t) so that K1 + K2t = 0 for H∗(t) (as Figure 1 illustrates). From this
discussion it might seem that H(t)∗ and I(t)# are plausible solutions for the canonical
CRTS Grossman model. However, given H(t)∗ and I(t)# the first-order condition for
health investment (13) holds only momentarily, since an instant ε later, true health
H(t + ε)true, evolving according to ∂H/∂t = I(t)# − d(t)H∗(t) (see 2 for α = 1), is
no longer at the “equilibrium” level H(t+ ε)∗, assumed to evolve according to (13) (or the
alternative forms 15, 16, or 17). As a result, the difference in health needs to be repeatedly
dissipated and there is no end to the bang-bang behavior.

G Longevity

Note that

∂=(T )

∂A0

∣∣∣∣
T

=
∂=(T )

∂I(T )

∂I(T )

∂A0

∣∣∣∣
T

+
∂=(T )

∂C(T )

∂C(T )

∂A0

∣∣∣∣
T

+
∂=(T )

∂A(T )

∂A(T )

∂A0

∣∣∣∣
T

+
∂=(T )

∂H(T )

∂H(T )

∂A0

∣∣∣∣
T

+
∂=(T )

∂qA(T )

∂qA(T )

∂A0

∣∣∣∣
T

+
∂=(T )

∂qH(T )

∂qH(T )

∂A0

∣∣∣∣
T

, (93)

where ∂=(T )/∂I(T ) = 0, ∂=(T )/∂C(T ) = 0, which follows from the first-order conditions,
∂A(T )/∂A0|T = ∂H(T )/∂A0|T = 0, since A(T ) and H(T ) are fixed, ∂=(T )/∂qH(T ) =
∂H(t)/∂t|t=T and ∂=(T )/∂qA(T ) = ∂A(t)/∂t|t=T , and I have used (13) and (50).

57Note that the literature has not previously derived and does in fact not employ the expression I(t)#

for the level of health investment.
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H ∂H(T )/∂A0 is positive and increases with δT .

First, solve the state equation for health (2):

H(t) = H(0)e−
∫ t
0 d(x)dx +

∫ t

0
I(s)αe−

∫ t
s d(x)dxds. (94)

Then take the derivative of (94) with respect to T to obtain

∂H(t)

∂T

∣∣∣∣
A0

=

∫ t

0

{
αI(s)α−1

∂I(s)

∂T

∣∣∣∣
A0

}
e−

∫ t
s d(x)dxds. (95)

Now take the derivative of (94) with respect to T for t = T

∂H(T )

∂T

∣∣∣∣
A0

=
∂Hmin

∂T

∣∣∣∣
A0

= 0

= I(T )α − d(T )H(T ) +
∂H(t)

∂T

∣∣∣∣
A0,t=T

=
∂H(t)

∂t

∣∣∣∣
A0,t=T

+
∂H(t)

∂T

∣∣∣∣
A0,t=T

, (96)

where we distinguish in notation between ∂H(t)/∂t|A0,t=T
, which represents the derivative

with respect to time t at t = T , and ∂H(t)/∂T |A0,t=T
, which represents variation with

respect to the parameter T at t = T .
The derivative of health with respect to time at t = T is negative since H(t) approaches

Hmin from above. Thus we have

∂H(t)

∂T

∣∣∣∣
A0,t=T

= − ∂H(t)

∂t

∣∣∣∣
A0,t=T

> 0.

Intuitively, if length-of-life is extended to T + δT the health stock has to be higher at the
previous point of death T , and it is higher by exactly the change in health over a small
period of time. Thus, ∂H(T )/∂A0 = ∂H(T )/∂A0|T + (∂H(t)/∂T |A0,t=T

)(∂T/∂A0) =
(∂H(t)/∂T |A0,t=T

)(∂T/∂A0) > 0.
Further, consider equation (26) for t = T and Z = A0 and note that for

fixed T , ∂H(T )/∂A0|T = 0 (see earlier discussion), so that the value of the total
differential ∂H(T )/∂A0 is determined by the second term on the RHS of (26). Since
∂H(t)/∂T |A0,t=T

= − ∂H(t)/∂t|A0,t=T
= −[I(T )α − d(T )H(T )] (compare with 96), it is

the same for any trajectory as it represents the negative of the derivate with respect to
time t at t = T of the unperturbed (unchanged) path. Thus the end point ∂H(T )/∂A0

is proportional to the degree of life extension afforded by additional wealth ∂T/∂A0 and
lies further to the right in the phase diagram for greater ∂T/∂A0.
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I Variation in permanent wages and education

Permanent wages wE The comparative dynamic effect of a permanent increase in the
wage rate w(t), through, e.g., an increase in the parameter wE in (35), on the marginal
cost of health investment πI(t) can be obtained by taking the derivate of (23) with respect
to wE and keeping first-order terms (total differentials, free T ):

∂

∂t

∂πI(t)

∂wE
≈ w(t)

wE

∂s

∂H
+

1

qA(0)2
∂U

∂H
e−(β−δ)t × ∂qA(0)

∂wE
+ [d(t) + δ]× ∂πI(t)

∂wE

−
{

1

qA(0)

∂2U

∂H2
e−(β−δ)t +

∂2Y

∂H2

}
× ∂H(t)

∂wE
. (97)

The first term on the RHS of (97) represents a wealth effect. Permanently higher wages
raise the production benefit of health, as health is more valuable in reducing sick time
(freeing time for work) when wages are higher. In addition there is the usual wealth effect
(second term on the RHS). Both wealth terms are negative since sick time decreases with
health ∂s/∂H < 0, and ∂qA(0)/∂wE |T < 0 because wE raises lifetime earnings (permanent
income) and relaxes the budget constraint (3). Variation in permanent wages δwE is thus
distinct from variation in wealth δA0 in that it not only raises the consumption benefit
of health (as is the case for variation in δA0) but also the production benefit of health
(which is not the case for variation in δA0).

Likewise, the comparative dynamic effect of a permanent increase in the wage rate on
health H(t) is obtained by taking the derivative of (24) with respect to wE and keeping
first-order terms

∂

∂t

∂H(t)

∂wE
≈ − α

1− α
κI
wE

I(t)α +
α

1− α
I(t)α

πI(t)
× ∂πI(t)

∂wE
− d(t)× ∂H(t)

∂wE
, (98)

where the first term on the RHS of equation (98) represents the negative effect of the
opportunity cost of time on health investment, and in turn on health.

The corresponding phase diagram is shown in Figure 7. It is nearly identical to
the phase diagram for variation in initial wealth δA0 (RHS of Figure 3), except that
the (∂/∂t)(∂H(t)/∂wE) null cline crosses the vertical ∂πI(t)/∂wE axis at πI(t)κI/wE
and not at the origin. This term represents the effect of a permanent increase in
wages wE on the opportunity cost of investing time in health. The (∂/∂t)(∂πI(t)/∂wE)
null cline crosses the vertical ∂πI(t)/∂wE axis at (−∂s/∂H) (w(t)/wE)/ [d(t) + δ] −[
qA(0)−2∂U/∂He−(β−δ)t

]
∂qA(0)/∂wE . This expression represents a wealth, or permanent

income, effect: permanently higher wages increase the production benefit of health (first
term) and increases wealth, thereby raising the consumption benefit of health (second
term; operating through ∂qA(0)/∂wE < 0). In the scenario depicted in Figure 7, it
is assumed that the opportunity cost of time effect is small compared to the wealth /
permanent income effect.

Following similar steps as in section 3.2.1 for variation in wealth, we first need to
establish whether length of life is extended as a result of a permanent increase in income.
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Figure 7: Phase diagram of the perturbation due to variation in permanent wages δwE, allowing
length of life T to be optimally chosen. The four vertical dotted lines represent different potential
values for the end point ∂H(T )/∂wE.

This can be accomplished by considering the fixed T case. The comparative dynamic effect
of a permanent increase in the wage rate wE on longevity can be obtained by replacing
A0 with wE in (29) and (30). Since ∂qA(0)/∂wE |T < 0 (diminishing returns to wealth /
permanent income), it follows that, similar to the case for variation in initial wealth δA0

(see section 3.2.1), a sufficient condition for life extension in response to positive variation
in permanent wages is ∂πI(T )/∂wE |T ≤ 0.

For fixed T all admissible paths in the phase diagram have to start and end at
the vertical axis, since H(0) and H(T ) are fixed.58 Trajectory e in the phase diagram
of Figure 7 is consistent with these conditions and the trajectory is characterized by
∂πI(T )/∂wE |T < 0. Thus length of life is extended ∂T/∂wE > 0.

Considering the T free case, the reasoning is identical to the discussion in section 3.2.1.
Following the logic outlined there, I find that trajectories a, b, c, and d are consistent with
life extension. The greater life is extended as a result of greater permanent income, the
further to the right is the trajectory’s end point ∂H(T )/∂wE . Example trajectory a is
associated with a large increase in the marginal value of health ∂πI(t)/∂wE and in health
∂H(t)/∂wE , compared to the unperturbed trajectory, and this trajectory is associated
with the greatest gain in longevity ∂T/∂wE . Trajectory b and c represent an intermediary

58As discussed before, the coefficients of the comparative dynamic equations (97) and (98) are identical
for the partial differentials, ∂πI(t)/∂wE |T and ∂H(t)/∂wE |T , for fixed T , and for the total differentials,
∂πI(t)/∂wE and ∂H(t)/∂wE , for free T . We can thus use the same phase diagram for both cases.
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case, and trajectory d a case of limited response (the latter most closely resembles the fixed
T case, represented by trajectory e). Trajectory f is incompatible with live extension and
ruled out.

These results rely on the assumption that the opportunity cost effect is smaller than the
wealth / permanent income effect. If, however, the opportunity cost effect is substantial,
the (∂/∂t)(∂H(t)/∂wE) null cline is shifted further upward in the phase diagram of Figure
7 than shown. A trajectory similar to e might then end up above the ∂H(t)/∂wE axis with
a positive end value of ∂πI(T )/∂wE |T , in which case we cannot unambiguously establish
that length of life increases.59

If the opportunity cost is very high, outweighing the wealth / permanent income effect,
the ∂H(t)/∂wE null cline could even cross the vertical ∂πI(t)/∂wE axis above the location
where the ∂πI(t)/∂wE null cline crosses the vertical ∂πI(t)/∂wE axis. In such a scenario
(not shown), for fixed T , any admissible trajectory is characterized by ∂πI(T )/∂wE |T > 0,
and we cannot unambiguously establish that length of life increases. While theoretically we
cannot rule out this scenario, empirical evidence suggests that a permanent wage change
affects health positively, while a transitory wage increase affects health negatively (e.g.,
Contoyannis, Jones and Rice, 2004), and that high-income individuals are generally in
better health than low-income individuals. Thus, in practice it appears the opportunity
cost effect is not large.

Education E The comparative dynamic effect of an increase in education E (see 34 and
35), on the marginal cost of health investment πI(t) is obtained by taking the derivate of
(23) with respect to E and keeping first-order terms (total differentials, free T ):

∂

∂t

∂πI(t)

∂E
≈ ρww(t)

∂s

∂H
+

1

qA(0)2
∂U

∂H
e−(β−δ)t × ∂qA(0)

∂E
+ [d(t) + δ]× ∂πI(t)

∂E

−
{

1

qA(0)

∂2U

∂H2
e−(β−δ)t +

∂2Y

∂H2

}
× ∂H(t)

∂E
. (100)

Likewise, the comparative dynamic effect of an increase in education on health H(t) is
obtained by taking the derivative of (24) with respect to E and keeping first-order terms:

∂

∂t

∂H(t)

∂E
≈ α

1− α
I(t)α [ρI − κIρw] +

α

1− α
I(t)α

πI(t)
× ∂πI(t)

∂E
− d(t)× ∂H(t)

∂E
. (101)

Contrasting the results of the comparative dynamics for education E (equations 100 and
101) with those obtained for permanent income wE (equations 97 and 98) we observe

59It is possible that length of life is still extended ∂T/∂wE > 0, even if ∂πI(T )/∂wE |T > 0, as long as

∂qA(0)

∂wE

∣∣∣∣
T

e−δTπI(T ) + qA(0)e−rT
∂πI(T )

∂wE

∣∣∣∣
T

< 0 (99)

(see expression 30). It is not clear from the phase diagram that this condition holds, hence we cannot
establish whether life is extended.
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that permanent wages wE and education E operate in the same way. This should come
as no surprise, as they both increase permanent wages. There is however one important
difference: the first term on the RHS of (101) represents both the effect of education
on the efficiency of health investment ρI (the educated are assumed to be more efficient
producers of health) and the effect of education on the opportunity cost of time κIρw.
The efficiency effect of education reduces the opportunity cost of time effect. The phase
diagram for the effect of variation in education δE is essentially the same as for variation
in permanent income wE , shown in Figure 7, and replacing wE by E (for this reason I
do not provide a separate phase diagram). Given strong empirical support for a positive
association between education and health, it could be that the efficiency effect dominates,
in which case the (∂/∂t)(∂H(t)/∂E) null cline would cross the vertical ∂πI(t)/∂E axis
below, instead of above, the origin. This would make the case for variation in education
δE stronger (compared to the case for variation in permanent wages wE) in ensuring that
the condition ∂πI(t)/∂E|T ≤ 0 is obtained and hence length of life is extended.

J Structural relations for empirical testing

From the utility function (31) and the first-order conditions (76) and (78) it follows that

Ct =
ζ

1− ζ
σHt − ϕHt

πCt
Ht, (102)

and

Ht = (1− ζ)Λ(qA0 )−1/ρ (σHt − ϕHt)
−χ π

χ−1/ρ
Ct

∏t
j=1(1 + βj)

−1/ρ∏t
j=1(1 + δj)−1/ρ

, (103)

Ct = ζΛ(qA0 )−1/ρ (σHt − ϕHt)
1−χ π

χ−1/ρ−1
Ct

∏t
j=1(1 + βj)

−1/ρ∏t
j=1(1 + δj)−1/ρ

, (104)

where Λ and χ are defined in (43) and (44).
Analogous to (21) define

It = µItm
1−kI
t τkIIt . (105)

Using equations (73) and (105) we obtain

πIt =
p1−kImt wkIt

αkkII (1− kI)1−kI µIt
I1−αt ≡ π∗ItI

1−α
t , (106)

mt =

(
1− kI
kI

)kI
µ−1It p

−kI
mt w

kI
t It ≡ m∗ItIt, (107)

τIt =

(
1− kI
kI

)−(1−kI)
µ−1It p

1−kI
mt w

−(1−kI)
t It ≡ τ∗ItIt. (108)
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Analogously to health investment It (equation 105), consumption Ct is assumed to be
produced by combining own time and goods/services purchased in the market according
to a Cobb-Douglas CRTS production function

Ct = µCtX
1−kC
t τkCCt , (109)

where µCt is an efficiency factor and 1 − kC and kC are the elasticities of consumption
Ct with respect to goods and services Xt purchased in the market and with respect to
own-time τCt , respectively.

Using equations (79) and (109) we have

πCt =
p1−kCXt

wkCt

kkCC (1− kC)1−kC µCt
, (110)

Xt =

(
1− kC
kC

)kC
µ−1Ct p

−kC
Xt

wkCt Ct ≡ X∗CtCt, (111)

τCt =

(
1− kC
kC

)−(1−kC)
µ−1Ct p

1−kC
Xt

w
−(1−kC)
t Ct ≡ τ∗CtCt. (112)

From (77), (33), (103), (106) and (110) follows

a1t I
1−α
t − (1− α)I1−αt Ĩt = a2tH

−1/χ
t + a3tH

−(1+γ)
t , (113)

where

a1t ≡ [dt + δt − (1− kI)p̃mt − kIw̃t + µ̃It ] , (114)

a2t ≡
[
(1− ζ)Λ(qA0 )−1/ρ

]1/χ
(π∗It)

−1(πCt)
1−1/ρχ

∏t
j=1(1 + βj)

−1/ρχ∏t
j=1(1 + δj)−1/ρχ

, (115)

a3t ≡ wt(π
∗
It)
−1Ω∗, (116)

where the notation f̃t is used to denote the relative change f̃t ≡ 1− ft−1

ft
in a function ft

and we have assumed small relative changes in the price of medical care p̃mt , wages w̃t
and the efficiency of the health investment process µ̃It .

Using (107) and (113) and the functional relations defined in section 3.3.1 we obtain
a structural relation (37) between health investment goods and services mt purchased in
the market and the stock of health Ht.

Assuming that both medical goods / services mt and time input τIt increase health
investment suggests 0 ≤ kI ≤ 1 (see equation 105), and if education E increases the
efficiency of medical care then ρI > 0 (see equation 34). Similarly we have 0 ≤ kC ≤ 1
(see equation 109). For these assumptions and small changes m̃t, the demand for health
investment goods/services mt (see relations 37 and 38) decreases with the biological aging
rate dt (and hence with environmental factors that are detrimental to health ξt), the rate
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of return to capital δt (an opportunity cost – individuals can invest in health or in the
stock market) and increases with price increases p̃mt and wage increases w̃t (it is better
to invest in health now when prices pmt and the opportunity cost of time wt are higher in
the future). In addition, due to the consumption aspect of health (health provides utility)
the demand for health investment goods/services mt (see relations 37 and 39) increases
with wealth (the shadow price of wealth qA0 is a decreasing function of wealth and life-time
earnings), education E (through assumed greater efficiency of health investment with the
level of education) and decreases with the price of health investment goods/services pmt .
For ρχ < 1 the demand for health investment goods/services mt decreases with the price
of consumption goods/services pXt (for ρχ > 1 it increases) and with the wage rate wt
(opportunity cost of time) (for ρχ > 1 the effect of the wage rate wt is ambiguous).
And, due to the production aspect of health (health increases earnings) the demand for
health investment goods/services mt (see relations 37 and 40) increases with education E
(through assumed greater efficiency of health investment with the level of education) and
the wage rate wt (a higher wage rate increases the marginal production benefit of health,
and this outweighs the opportunity cost of time associated with health investment) and
decreases with the price of health investment goods/services pmt .

The above discussion masks important effects of earnings and education. In this model
of perfect certainty an evolutionary wage change (along an individual’s wage profile) does
not affect the shadow price of wealth qA0 as the change is fully anticipated by the individual.
Thus comparing panel data for a single individual may reveal a higher wage rate wt to
be associated with a lower demand for health investment goods / services mt due to
a higher opportunity cost of time. However, comparing across individuals, those who
currently have a higher wage rate will in most cases also have higher life-time earnings
and thus a lower shadow price of wealth qA0 . This wealth effect increases the demand for
health investment goods / services and competes with the opportunity cost of time effect.
Similarly, to account for the effect of education it is important not only to consider the
possible effect of a higher efficiency of health investment (the parameter ρI), as in the
structural relation (37), but also the effect that education has on earnings (opportunity
cost of time effect; see equation 35) and in turn on wealth (wealth effect). Plausibly,
the wealth effect dominates the opportunity cost effect. For example, Dustmann and
Windmeijer (2000) and Contoyannis, Jones and Rice (2004) find a positive effect on health
from a permanent wage increase and a negative effect from a transitory wage increase. We
expect then that the effect of education and earnings is to increase the demand for health
investment goods / services through a wealth effect that may dominate the opportunity
cost of time effect associated with higher earnings.60 Thus, in testing the theory it will be
important to account for wealth.

60Further, one may be tempted to conclude that individuals invest less in health during middle and old
age because of the high opportunity cost of time associated with high earnings at these ages (see equation
35). However, as health deteriorates with age the demand for health investment increases (see sections 3.2
and 3.3). If the latter effect dominates, the model is capable of reproducing the observation that young
individuals invest little, the middle-aged invest more, and the elderly invest most in their health.
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